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Chapter 8. 
Donut world and the Duopoly Archipelago: 

social learning and the evolution of competition. 
 

 

8.1. Introduction. 

 

The traditional approach to economics has been to assume that agents are rational and 

use all of the information they have in an optimal manner. However, as we have seen 

in Thoughts on Economic Theory and Artificial Intelligence there are many arguments 

against this.  At best, it is a modelling simplification, an “as if” assumption made to 

make the process of understanding the economy and economic behaviour easier.  

There are rationality fundamentalists around, who believe optimising rationality is an 

essential part of  human nature.  I think that this is largely a credo with little or no 

justification, an act of faith by economists who want to have a single principle with 

which to understand economic phenomena.  There are reasons why I reject the 

fundamentalists view.  First, most economic decisions are made in the context of  

groups of people: the family/household, the firm, the union, the bank and so on.  Even 

if individuals are “rational”, that does not imply that the decisions of groups will be 

“as if” made by a single rational individual.  Second, in practice individuals do not 

appear to act in ways consistent with rationality all the time1: they may learn to be 

rational, particularly in repeated situations where there is a lot to be gained or lost.  

But then again, some people end up making the same mistakes over and over again.  

  In recent years there has been a considerable revival of interest in the notions 

of learning in a boundedly rational context.  This idea has of course been around for 

as long as economics itself. However, rather paradoxically, in the last decade the idea 

of boundedly rational processes has been revived in the field of game theory2.  Game 

theory has traditionally been the area of economics where the belief in rationality has 

been the most intense.  Indeed,  many game theorists inhabit an artificial world where 

disembodied rational agents interact in a sea of common knowledge, able to perform 

all and any calculation the theorist might conceive.  Without any constraints on the 

imagination, unencumbered by notions of  firms or markets or any explicitly 

economic context, with a fascination for 2x2 games (the Prisoner’s Dilemma an 

obsession) they create a rationality wonderland.  In rationality wonderland, agents ar 
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perfectly rational, agents know the structure of the game and also know that all agents 

including themselves know that they know the game.   This is called common 

knowledge.  In order for a rational player to know what to do, she 3 needs do two 

things: first to guess what the other guy(s) are going to do; second to choose a best 

response to that action.  Now, this problem involves an infinite regress: I need to 

predict the other player’s behaviour to choose my best action; she needs to predict 

mine to choose her best action.  So, I need to predict her prediction of my action; she 

needs to predict my prediction of her prediction of my prediction etc.   This infinite 

regress is solved by game theorists uttering the incantation “common knowledge” and 

then proposing that rational players would do what the game theorist wants them to.  

In my opinion the concept of common knowledge in incoherent, and arises because 

economists (in this case game theorists) try to extract too much from the basic idea of 

rationality4.   However, dear reader , this is not the time nor place to explore this line 

of reasoning. Rationality wonderland is not our destination now: our destinations are 

Donut World and the Duopoly Archipelago.  Before we set off, we will briefly 

consider learning. 

 Learning can be seen as taking place at two levels. Individual learning occurs 

when a single agent alters its beliefs and/or behaviour.   Learning in this sense can 

take place if there is only one agent on its own without any interaction with another: 

for example, Robinson Crusoe was able to update his beliefs about farming and 

fishing techniques during his stay on the island. In the previous chapter on Artificial 

intelligence and economics I discussed some aspects of modelling the bounded 

rationality of individual agents.  Social learning occurs within a population of agents 

and can only occur when there is more than one agent (indeed, usually a large number 

of agents is assumed).  Whereas with individual learning it is the same individual who 

changes his behaviour, with social learning what matters is the evolution of the 

population behaviour:  certain types of beliefs or behaviour might become more 

common within a population or society.  Of course, some people would say that this is 

not “learning” as such, since learning must involve some mental processes and the 

mental state of “understanding”.  However, this is an issue which lies beyond this 

chapter: I will simply follow the common usage and call all forms of adaptation and 

selection “learning”.   

 An archetypal example of social learning is Darwinian natural selection. 

Suppose that we have a particular species: the giraffe.  The giraffe develops a long 
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neck so that it can eat leafs high up on trees5.  Now, we can view this as a design 

problem: suppose that you were designing a giraffe.  You can make the giraffe have a 

short neck or a long neck.  There is a cost to a longer neck: it reduces mobility, uses 

up more energy and requires more food to keep it going and so on.  It also has 

benefits: the giraffe has access to leaves that are beyond the reach of other land based 

animals.  The question is whether the costs outweigh the benefits.  Individual giraffes 

never learn about this: they have the neck they are born with and that is it6.  However, 

if the marginal benefit of a longer neck outweighs the marginal cost the giraffes with 

longer necks will prosper and have more children who will tend to inherit the longer 

neck gene.  This will go on until the point at which the  marginal cost outweighs the 

benefits (or so the simple story goes).  We can say that although no individual giraffe 

learns anything (they just hang out, eat leaves and try to avoid being eaten by lions),  

the giraffe species has “learned” the solution to the problem of neck design.  Now, 

this is perhaps a non-standard use of the term “learn”, but it is one which is standard 

in this literature, perhaps made more palatable in an economics by the fact that we are 

not talking giraffes but humans.  Darwinian natural selection is an extreme form of 

social learning: in economic models we might expect individuals to learn within the 

process of natural selection.  There should be an interaction between individual and 

social learning. 

 

The plan of this chapter is as follows.  In section 8.2 we will take a look at Antione 

Augustine Cournot’s best response framework and the models of evolutionary biology 

(evolutionary stable strategies and the replicator dynamics).  We will discover the 

close relationship between Cournot’s concept of the Nash equilibrium and 

evolutionary equilibrium made clear by John Maynard Smith.  As I shall argue, the 

assumption of random matching underlying the biological models are not appropriate 

for most economic phenomena.  In section 8.3 we will examine local interaction 

models which abandon the random matching assumption and replace it by agents 

interacting over time in a fixed network of relationships (Donut world).  In section 8.4 

we introduce an explicitly economic context to the learning process.  In the Duopoly 

Archipelago, there is a whole economy of markets, within each market there are two 

firms playing some sort of market game.  The new feature is that there is a capital 

market which imposes the discipline on all firms that they earn at least average profits 

in the long-run:  the capital market imposes a selection criterion, survival of those that 
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manage to keep up with the population average – “keeping up with the Joneses”.  

There we find the surprising result that the in each market in the economy is driven 

towards coluusion. 

 

 

8.2 Social Learning: from Antione Augustin Cournot to John 

Maynard Smith. 

 

In this section I look at two types learning model. The French economist Antoine 

Augustin Cournot. (1801-1877) is central to both: in the 1980’s John Maynard Smith 

extended the empire of economists from rational economic agents to the natural world 

of dumb beasts.  First I will review Cournot’s duopoly model as a learning model.  

Second, I will review the biological model of  evolution with random matching.  What 

we shall see is that there is a very close relationship between evolutionary models and 

the economist’s concept of a Nash equilibrium.  Indeed, in his book Evolution and the 

theory of games the British evolutionary biologist John Maynard Smith showed that 

we can look at the outcome of  evolutionary processes as a Nash equilibrium.    

 

8.2.1 Cournot and Best response dynamics. 

 

Let us start from the beginning, Cournot’s familiar model of duopoly, as we have 

discussed in the previous chapters on equilibrium and explanation and oligopoly 

theory made simple.  The process of adjustment to equilibrium involves an alternating 

move structure:  we can think of  time divided into discrete periods and firms 

alternately set their output for the next two periods.  Cournot introduced the idea of 

the myopic best response dynamic: the firm that sets its output in period t chooses the 

best response to the output currently produced by the other firm.  Now, we can say 

two things about this simple “society”.  First, we can think of the firms as learning 

about each others’ behaviour: each period they update their own beliefs about the 

other firm’s output and adjusts its own behaviour appropriately.  Also, the process 

will (under certain conditions) lead the firms to play the Nash7 equilibrium in outputs.  

To see why, recall that any stationary point in this learning process occurs only when 

each firm is choosing a best response to the other firm, precisely as defined in the 
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notion of a Nash equilibrium.  We can see that there is a relationship between learning 

process and the equilibrium here. The learning mechanism (myopic best response) 

defines a dynamic process (the time path of outputs).  The equilibrium can be though 

of as a stationary  point  in this dynamic process that is stable.  The Cournot 

adjustment process has been the subject of much criticism: why should firms be so 

myopic?  However, in the context of bounded rationality, assuming agents are dumb 

is not such a bad thing!  As we have discussed before, exactly how far to dumb down 

is a big issue. 

 

8.2.2 Replication is the name of the game: Evolutionary Biology. 

 

Another type of social learning model comes from evolutionary biology. These are 

not easy to adapt to economic applications: however, since lack of realism has not 

often deterred  economists, let us proceed with the following model, which can be 

seen as a metaphor or parable. Consider a population of economic agents who each 

live one period.  They are randomly matched with each other each generation.  The 

economic agents have offspring: the payoff of the agent during its lifetime determines 

the number of its offspring.  How will the population evolve over time?  Well, we can 

define an agent by the action it takes (e.g. the level of output it chooses). We can then 

describe the population at time t by the proportions of  each action which prevail at 

that time: for example, if there are three types of agent {A,B,C}, then we have the 

vector of the 3 population shares [PA, PB ,PC ] with PA+PB+PC=1. From an individual 

agent’s point of view, what matters is the action played by its opponent when it is 

alive, since this determines its own payoff (it does not care about other agents’  

payoffs).  However, from the point of view of the population, all that matters is how 

each particular type does: on the assumption of random matching, players of a 

particular type are evenly spread over the population.  For example, if PA =0.3, 

PB=0.2 and PC=0.5, then if we take type A for example, 30% of type A agents will be 

playing type As: 20% type Bs and 50% type Cs.  This can be represented by the array:  

 









===
===

===

25.01.015.0
1.004.006.0

15.006.009.0

CCCBCA

BCBBBA

ACABAA

PPP
PPP

PPP
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The first row represents the distribution of type A: PAA  the proportion of type As 

matched with type As; PAB the proportion of type As with matched with Bs and so on.  

The second row represents the distribution of  type B agents over the population.  

With random matching, this distribution is easily calculated: PAi = PA. Pi  where 

i=A,B,C.  

 

Now, let us suppose that there is a nxn payoff matrix  Π with elements π(i,j) which 

give the payoff to a strategy i when it plays a strategy  j.  With three strategies we 

have the 3x3 matrix: 

 
















=Π

),(),(),(
),(),(),(

),(),(),(

CCBCCA
CBBBAB

CABAAA

πππ
πππ

πππ

 

 
For example, the player “type” or strategy might be outputs if the matched players 

play a Cournot duopoly game.  This might not be very realistic: it is hard to imagine 

firms being randomly matched: one period you play a sock firm, the next a bicycle 

firm.  However,  continuing to ignore realism as an issue and for the purpose of  

exposition, let us suppose that the three types are actually output levels Xi:  

 
Expository Parable of the Randomly Matched Cournot Duopolists. 
 
• When any two individual agents are matched, the Industry demand they face is 

P=1-Xi-Xj . 
 
• There are no costs. 
 
• Type A produces output  XA=1/2;   type B produces XB=1/3; type C produces 

XC=1/4. 
 
 
In this case we have the payoff matrix π(i,j)= Xi (1- Xi – Xj ) – see oligopoly theory 

made simple for more details- with payoffs both as exact fractions and decimals to 3 

places. 

 
















=
















=Π

000.0100.0125.0
067.0111.0139.0

063.0104.0125.0

010/18/1
15/19/136/5

16/148/58/1
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Clearly, there is a unique strict Nash Equilibrium here: both firms produce 1/3.  This 

is the Cournot-Nash equilibrium.  To see why, lets us consider the best response of 

the row8 player i.  If firm J produced ¼, then i’s best response (look down the first 

column) is 1/3 (since 5/36>1/8).  If firm j plays 1/3, the best response is 1/3; if j plays 

½ then 1/3 is also best.  In fact, in this simple example, Strategy B (1/3) is a dominant 

strategy: whatever the other player does, an output of 1/3 yields the best payoff - the 

second row has the largest element in each column. Of course, we could have 

constructed things so that there was no dominant strategy, but the types chosen are 

salient: ¼ is the joint-profit maximizing strategy; ½ is both the Stackelberg leaders 

output and half the Walrasian output.  Having outlined the basic structure of the 

model, we now need to consider the population dynamics: we will take the example 

of  the replicator dynamics. 

 

8.2.3 The Replicator dynamics: even educated Flees do it. 
 

The basic idea behind the replicator dynamics is simple: strategies that have a higher 

payoff have more offspring: their share of the population gets bigger.   Success breeds 

succdess, failures fade away.  Lets have a quick look at the mathematics. For those of 

you who do not like equations, just skip the rest of this section and move straight to 

2.4.   

 

The average payoff of  strategy i at time t (Πi(t))is defined as the weighted sum of its 

payoffs playing each strategy, where the weights are the population proportions.  

Hence for strategy A 

 

),(),().(),().()( CAPBAtPAAtPt CBAA πππ ++=Π  

 
whilst the average payoff over all firms at time t is the weighted average of the 

payoffs off each strategy over the whole population 

 

)()()()()()()()( tCtCPtBtBPtAtAPtiiPt Π+Π+Π=Π∑=Π  

 
 We can now model the process of evolution.  The simplest form of  evolution is to 

suppose that the population dynamics are given by the replicator dynamics:  
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The growth of the proportion of type i is equal to the ratio of its payoff to the 

population average. The point here is that the proportion of  a particular type increases 

(decreases) in proportion to the extend that its payoff is above (below) average.  There 

is a simple story underlying this: the number of offspring is a linear function of the 

actual payoff9.   

 
 
8.2.4 Alien Invasions and the Evolutionary Stable Strategy (ESS)10. 
 
John Maynard Smith, the British evolutionary biologist, introduced the concept of the 

evolutionary stable strategy (ESS).  An ESS strategy is one which is stable if there is a 

small invasion by another strategy.  Suppose the whole population is playing one 

strategy.  Now let a small ε-invasion happen: an ε-invasion occurs when a proportion 

of  size ε  invades the population.  The initial strategy is ESS if the ε-invasion will not 

succeed - it will die out.  This can be expressed formally in the following way: 

suppose that start from a situation where all of the population (earth people) is playing 

some strategy i: from our example, i can be one of {A,B,C}.   The payoff of all firms 

will then be π(i,i).  Now, if a proportion of  players of type j (other than  i) invade the 

population, the average payoff of the alien invaders will be (1-ε)π(j,i) + ε.π(j,j).   The 

alien invaders are almost certain (with probability (1-ε)) to meet someone playing 

strategy i; with a small probability ε they meet one of their own11.  Likewise, the earth 

people playing i will have the payoff  (1-ε)π(i,i) + ε.π(i,j).  The condition for strategy 

i to be an  ESS is in maths:   

 

Definition 1: Strategy i is ESS if for all j other than i 
 

(1-ε)π(i,i) + ε.π(i,j) > (1-ε)π(j,i) + ε.π(j,j). 
 

In plain English, the alien invaders earn (strictly) less than the earth people.  The left-

hand of the inequality is the payoff of the earth people; the right-hand the aliens. 

Hence if  population growth depends (positively) on payoff, the aliens will die out.  

Now, we come to an amazing result. First we have to understand the notion of a strict 

Nash equilibrium.   A strict Nash equilibrium occurs when the equilibrium strategy 
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yields strictly more than any other possible strategy: a weak Nash equilibrium occurs 

when the equilibrium strategy earns no less (i.e. weakly more) than any other possible 

strategy.  In particular, a sufficient condition for strategy i to be ESS is that it is a strict 

Nash equilibrium strategy. In fact John Maynard Smith (1982) showed that the above 

definition of an ESS was equivalent to the following:  

 

Definition 2: strategy i is ESS if 

(a) π(i,i) > π(j,i) for all j  other than i. 

(b) if π(i,i) =π(j,i), then π(i,j)> π(j,j). 

 

As we can see, part (a) of the definition is simply the standard definition of a Nash 

equilibrium.  If the Nash equilibrium is strict, then it is automatically an ESS.  If  we 

have a non-strict Nash equilibrium, we need to have the additional condition (b): the 

alien invaders do worse against themselves than the earth people.  This result has the 

amazing implication that we can use game theory to model evolutionary biology! I 

recall in 1982 dining at Christchurch college Oxford.  Neither the fact that I was sat 

next to an elderly cleric called a “cannon” , nor the fact that the food was cold by the 

time it had reached the high-table from the kitchen were the most amazing thing that 

evening.  No, I was most surprised by a zoologist who told me that he was applying 

game theory to animal behaviour.  What seems a commonplace now seemed amazing 

then,  since we all used to look at game theory in terms of rationality wonderland.  

Well, as the evening wore on (and after more glasses of wine and surreal 

conversations with the elderly cannon) it seemed pretty sensible. 

 However, the final relationship is between the replicator dynamics and the ESS 

concept.  Again, there is a strong relationship between the two ideas:  every ESS is an 

asymptotically stable steady state of the replicator dynamics12.  A steady state is a 

state which is unchanging over time: in this case we can think of the state being the 

vector of population proportions. A steady state is asymptotically stable when the 

system returns to the steady state whenever there is a small deviation from 

equilibrium13.  

 What is the relationship between a Nash equilibrium and the replicator 

dynamics? Well, any steady state that is asymptotically stable under the replicator 

dynamics has to be a Nash equilibrium.  This is both important and obvious.  A Nash 
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equilibrium strategy has to be a best response to itself:  this is also a necessary 

condition for the replicator dynamics to be stable around a steady state. To see why, 

suppose that a strategy was not the best response to itself: in terms of our example, let 

us suppose that we have a steady state where all firms are “collusive” type A’s. In this 

case,  suppose that we move away from this a little and introduce some Cournot type 

B’s.  From the payoff matrix the type B’s will earn more than the type As, and so the 

proportion of type B’s will increase, leading to a move further away from the initial 

steady state.  This argument will hold for any non-Nash equilibrium Strategy.   

However, whilst all stable steady states are Nash equilibria, not all Nash 

equilibria are stable.  For example, lets augment the strategy space to include a type 

D,  which always produces 1 unit of output. This strategy yields a zero payoff for 

itself and any strategy it plays against14.  In effect, the price is kept at zero whatever 

the opponent does: it seems appropriate to name it the “Bertrand”  or party pooper 

strategy. This strategy is a (weak) Nash equilibrium, the Bertrand equilibrium.  

However, it is certainly not stable: suppose that some collusive firms invade.  These 

may earn zero most of the time when they play Bertrand firms:  however, when they 

meet each other they earn a positive profit, so that they will thrive and increase in 

number, whilst the Bertrand firms decline.   

The relationship between the three concepts of  Nash equilibrium, stability of 

the replicator dynamics and ESS for steady states is depicted in Figure 1.  We have 

concentric circles: the largest set is the set of all Nash eqiulibria; within that we have 

the set of stable steady states; within that is the set of ESS; within that is the set of 

strict Nash equilibria 15.  

Fig 8.1 

We have come full circle: we started with Cournot and his equilibrium.  He 

saw the equilibrium outcome as resulting from a dynamic process of adjustment: the 

steady state arising out of it.  The resultant Nash equilibrium has formed the basis for 

imperfectly competitive models, from Edgworth’s price-setting duopoly model (1889) 

and  the Robinson/Chamberlin model of monopolistic competition (1933) to the 

present day.   We have also seen the same equilibrium concept playing a crucial role 

in evolutionary biology. In between, we have the more orthodox perspective of super-

rational agents with common knowledge playing games.  It is amazing that the same 

equilibrium concept can be seen as arising from such different processes and 

perspectives.  
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8.2.5 Random Matching and Economics. 

The evolutionary models used in biology are perhaps not well suited to economics.  

Most of these are based on the crucial assumption of random matching.  Most 

economic interactions are repeated.  We buy and sell with familiar traders over time.  

We work for the same firm, buy from the same shops, visit the same restaurants.  This 

is the same whether we think of the household or the firm.  If we are thinking of 

oligopoly or collective bargaining, then random matching is particularly 

inappropriate! In economics, the modelling of  evolutionary forces by  

such biological models might be thought to be inappropriate except for special cases. 

 

However, whilst I would myself council strongly against the unthinking and literal 

use of such biological models, we can think of the biological process not in terms of 

its microfoundations, which are inappropriate, but rather as a metaphor.  The 

evolutionary metaphor merely says that forms of behaviour (strategies) that are more 

successful (earn higher payoffs) tend to become more  common.  That having been 

said, there can be no substitute for an appropriate framework for modelling economic 

and social interaction. 

 

8.3 Social learning in Human Societies: Gabriel Tarde 
 
 

Whatever a great man does, the 

very same is also done by other men. 

Whatever the standard he sets, 

The world follows it. 

 
Bhagavad Gita, 3.21. 

 
 
There are powerful forces of  learning in human societies that are not captured in the 

basic natural selection model.  This was recognised by the French social theorist 

Gabriel Tarde (1843-1904). He was a lawyer and judge who for obvious reasons 

thought a lot about the causes of crime.  He developed some general principles which 

he called the laws if imitation. He thought that people learn from one another through 

a process of imitation, and that activity or behaviour seen in others tends to reinforce 
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or discourage previous habits.  He also observed that the process of diffusion in 

human society often follows an “S-curve”,  otherwise known as the logistic curve, as 

depicted in Figure 2. 

Figure 8.2 

What happens in the S-curve is roughly as follows.  Someone has an idea: let us take 

the concrete example of a new method of breaking into a house. At first, only that 

person knows about it, plus possibly a few close friends whom he tells about it 

(possibly when he/she is in prison).   But these friends can tell their friends and so on: 

the process of growth here is exponential: each new person who catches on to the idea 

can pass it on to a few others. This explains the initial convex part of the curve: the 

absolute number of new people adopting the innovation in each period (the slope of 

the curve) is increasing up to time T’.    This process cannot go on forever, however, 

since the population is finite!  What happens eventually is that a saturation point is 

reached.  Eventually when a new person learns of the idea, they will find that most 

people they tell the idea to will already know it.  The process of growth will thus slow 

down and possibly there will remain some people (e.g. non-criminals) who will never 

adopt the new technique for housebreaking.  After time T’ the number of people 

adopting the innovation slows down and the curve becomes concave.  Of course,  

ideas come and go and the world does not remain still.  If lots of criminals adopt the 

new technique of housebreaking, then the police and security firms will develop 

counter measures which  house owners will start to adopt.  After a period of time the 

new technique will become less useful and there may be a period of  decline.  In 

ancient Greece, one method of housebreaking was to tunnel through the walls of the 

house.  This method relied on a mud-wall construction, and the technology died out 

when this construction technology became less common. 

 

  This theory of social diffusion has been widely developed and applied in a 

variety of contexts.  In particular, it provides one of the basic models for marketing: 

firms are keen to look at ways of speeding up the process of adoption of a new 

product and extend the life of an existing one (see for example Kotler 1986).  It is also 

used by economists as a model for the diffusion of technical progress (the path 

breaking paper here was Mansfield 1961),  applied in health (the theory of diffusion 

of medical practices and diseases, Coleman 1966) amongst others.   
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Certain factors have been identified as important in the spread of an idea.  For 

example,  the adoption of the idea by opinion leaders can be crucial: if a widely 

known and respected individual is known to adopt an idea, it gives others the 

inspiration and confidence to try it out.  A firm may not risk trying out a knew 

technology until it has seen that some of the large established players have taken it 

seriously.  We can think people having an agenda: these are the ideas or actions that 

people take seriously in the sense that they might actually think about adopting them.  

Because of  the limitations of bounded rationality, people do not think about 

everything all of the time: they only think about a few things most of the time.  We all 

know this from out own experience.  We know that certain types of  food and drink 

are bad for us: however, although we know and are aware of the healthier alternatives, 

we still end up eating  the same old food most of the time.  It takes some effort to 

change habits, to put new ideas (in this case a new diet) onto our agenda, so that we 

think about them seriously when we take decisions.  Seeing someone whom you 

respect or identify with in some way adopting the idea is a way of  putting it on your 

agenda, which makes it more likely that you will adopt it.  This was exactly Krishna’s 

argument to Arjuna quoted in the Bhagavad Gita.  

 

8.3.1 Welcome to Donut-world. 

 

One way of thinking about the process of interaction is to imagine society as a donut.  

A donut is a three-dimensional Torus: a Torus is a network without any edges.  To 

make this clear, think about network consisting of  houses and paths.  In each house 

there lives an economic agent.  The houses are connected by  paths 16.  We can 

represent a society by a map of the houses and paths, as in Figure 8.3.  Now, houses 

and paths can in theory be built anywhere: however, we can imagine that planning 

laws dictate a particular structure called a lattice or grid as in Fig.8.3. In a lattice, the 

houses are built in equally spaced rows and columns, whilst the house is connected to 

other houses by paths which are either East-West or North-South.   Thus a house is 

only connected to its 4 immediate neighbours (going clockwise and starting at the top, 

North, East, South and West): it is not connected with its other 4 neighbours (who are 

Northwest, Northeast, Southeast and Southwest).  We can think of the neighbourhood 

of the agent:  these are the other agents with whom the agent interacts directly.  The 

neighbourhood is defined by a number r: this is the number of paths the agent can 
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travel to interact: if r=1, then the neighbourhood of the agent consists of its 4 

immediate neighbours.  If  r=2, then the neighbourhood expands to include 8 other 

houses (a total of 12).  Lets keep life simple, and suppose that r=1: the neighbourhood 

consists only of the folks next door. 

Figure 8.3 

In Figure 8.3, there is an edge to the lattice, where the houses stop.  If you live 

in the middle of the page, you will have the regular 4 neighbours. However, if you 

live on the edges, you will only have 3 neighbours: if you live at the corners, you will 

only have 2 neighbours.  Now, lets talk donuts. First forget the origami: do not 

attempt to tear out the page and fold it at home (it won’t work17).  In your mind, 

consider what would happen if you joined up the top and the bottom row together and 

also the left and the right.  Think about it for a while: the end result would be a donut, 

a surface without edges or corners.  This is a very useful concept, since it means that 

every house is the same:  all houses have the same number of neighbours.  A one 

dimensional Torus can be represented in two dimensions as a circle 18: the  two 

dimensional Torus can be represented in three dimensions as a donut. The important 

thing is that the dimension of the Torus is one less than the dimension it occurs in 

(much the same as the surface of the earth is two dimensional19 but occurs in three 

dimensional space).  Rather than trying to draw a real donut, we can represent it by 

imagining that in fact there are paths going from all of the houses on the left side of  

Fig 8.3 to the houses on the right side, and those on the top to those on the bottom 

(corner houses would thus have two new paths).  Maybe one day fast food outlets will 

sell “flat pack” donuts which you assemble before eating. 

 

So, here we have our simple society.  Let us suppose that each household is 

growing food (indeed some of the earliest studies of diffusion were in agriculture, 

Ryan and Gross 1943).  Each agent can see the gardens of the houses in his 

neighbourhood and the methods of gardening; Now, suppose that one household 

innovates in period 1: it works out that if  it rotates the crops in a certain way disease 

is reduced and output increases.  We can take the idealised case first: suppose that 

neighbours see exactly what is going on and will always adopt a new technology with 

certainty if  it is beneficial. In this case, in period 1 all neighbours will have seen what 

was done in period 1 and also that it yielded a greater harvest.  So,  in period 2 they 

will do the same thing: there are now 5 households rotating the crops. In period 3 their 
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neighbours will also do the same thing: and additional 8 households bringing the total 

to 13.  Now, suppose that this is an infinite lattice (it goes on forever): then the growth 

will result from each new house in period t generating 4(t-1) new houses in the next 

period.  The sequence with one house starting is thus: 1, 5,  13,  21, 37…..  The total 

number of houses with the new technology at time t, denoted H(t) is thus given by the 

recursive relationship H(t)=H(t-1) + 4.(t-1), along with the assumed initial value 

H(0)=0,  H(1)=1.   

 

Now, let us assume that we are in Donut world, in a 5x5 3-D Torus. In this case we 

have the constraint H(t)<25.  What will happen?  Well, for the first three periods, 

everything is as in the infinite lattice case: H(1)=1, H(2)=5, H(3)=13.  Now, in period 

t=4, only 8 new houses adopt the innovation:  the 4 houses at the “edge” of the square 

in period t=3 are next to houses that have already adopted the technology.   Hence 

H(4)=21. The 4 households at the “corners” of the square are not reached until the 

next period: in t=5 there are 4 new houses adopting the new technology, so that 

H(5)=25, and H(t)=25 for t>5.   In Figure 8.4 we can plot the diffusion of the 

technology: it indeed follows a roughly S-shaped curve: the increases in absolute 

terms are: 1,4,8,8,4,4.    

Fig. 8.4 

 

This simple story is deterministic. Lets introduce some uncertainty or 

randomness into it. For example, suppose that households will not be looking at each 

others gardens all the time and may (due to fog or rain) not observe them with great 

accuracy;  the output of the farms has a random element; the households that see a 

high output might not bother to adopt the new technology  (due to inertia or laziness). 

Let us suppose that we start from a situation where all gardeners are doing the same 

thing: they will obtain the same yield as each other, subject only to a random element 

(the luck of the draw) each harvest.  This randomness means that the actual path of 

diffusion will be random, depending on what happens.  For example, the diffusion 

might take some time to get started: the household with the new method might be 

unlucky for a few periods and its output might not be particularly high; even if it is 

high, the neighbours might not notice; even if they do notice they may not do 

anything about it straight away.  However, the important thing to note about 

randomness and uncertainty is that if there is a enough time, then everything that can 
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happen will happen.  From the perspective of eternity, everything is possible.  The 

exact timing of events is random: but as the time available becomes longer and 

longer, even quite unlikely things can happen.  It is like throwing dice: it is fairly 

unlikely that you will throw a double 6 in any one throw, but as you keep throwing 

the event becomes more and more likely.  Throw the dice a thousand times and it is 

almost certain you will throw a double six at least once.  This is why, in social 

learning models researchers often concentrate on the asymptotic or long-run 

properties of  the system (modelled mathematically as what happens when as t tends 

to infinity).  In terms of social learning, the effect of the randomness is merely to slow 

up the path of diffusion and make the exact path and timing uncertain.  The end result 

will not necessarily be changed (see for example Bala and Goyal 1998 for an analysis 

of learning from neighbours with local interaction with an explicit model of learning).  

 

 

8.3.2 Diffusion in a strategic context. 

 

 The case of an innovation is non-strategic: my method of  cultivating. 

vegetables does not affect yours20.  Now, let us think of a strategic interaction, where I 

actually undertake some sort of economic activity with my neighbours.  For example, 

consider the Prisoner’s Dilemma PD. There are two strategies: cooperate C or defect 

D. The payoff to the farmer of playing strategy i against j π(i,j) are as follows: 

π(C,C)=2, π(C,D)=0, π(D,D)=0 and π(D,C)=a which we represent the payoff matrix 

 


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Each farmer plays the PD all of his 4 neighbours.  However, he 21 cannot customise: at 

time t he can only play one strategy with each neighbour, either C or D: one size must 

fit all comers.   

Now, clearly, since D is a dominant strategy, the issue might seem pretty 

trivial: choose D, since it is the best strategy whatever the competition does.  

However, if everyone had that attitude all game theorists would be unemployed.  So 

lets assume that things happen differently.  Each farmer does what he does.  However, 
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he observes the payoffs of his neighbours. If a neighbour is doing better than him, he 

will imitate the neighbour: if more than one is doing better, he will imitate the one 

with the highest payoff.  Lets call this process “imitate your best neighbour”22.  Now, 

the payoff of a particular agent will be the sum of the payoffs he earns form his 4 

neighbours.  If we take the case of the PD, we then have a variety of possibilities: for 

a given strategy chosen by the farmer Giles, there are 4 possible combinations of 

strategies he can face:  {C,C,C,C}, {C,C,C,D}, {C,C,D,D},  {C,D,D,D}, {D,D,D,D}.  

Since there are two possible strategies farmer Giles can choose, we can represent the 

payoffs of the farmer in table, with a=2.5 

 

 C D 

CCCC 8 10 

CCCD 6 8.5 

CCDD 4 7 

CDDD 2 5.5 

DDDD 0 4 

 

Table: Payoffs and  the Neighbourhood strategies with PD (a=2.5). 

 

Now, consider what might happen here. Let us do a few thought experiment in 

Donutworld.  What will the learning rule “imitate your best neighbour”  generate at 

the social level? 

 

Case 1: Suppose the Torus is an even-numbered square (for concreteness a chess 

board,  8x8).  50% of  farmers choose C, and 50% choose D.  Furthermore, suppose 

that like a chess board, the Cs and Ds alternate. Every farmer will have two Cs and 2 

Ds in his neighbourhood.  Looking down the table, the C farmers will be earning 4; 

the Ds 7.  In this case, the C farmers will look enviously at their D counterparts,  and 

imitate them.  So, the next period all firms will choose D, which is of course the Nash 

equilibrium of the PD.  The equilibrium under the “imitate your best neighbour” is a 

steady state where all farmers adopt D. 
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Case 2:  As in case 1, but the Cs and Ds are partitioned into two separate blocks.  The 

top half of the donut is all D, the bottom is all C.  There are 4 different payoffs here. 

The D surrounded by Ds earns 4; the C surrounded by Cs earns 8.  The more 

interesting case are the 2 borders, where Cs meet Ds.  Given that the Torus is an even 

square (8x8) these are a straight lines.  In this case, each borderline C will have 3 

fellow Cs and one D, hence earning 6;  each borderline D will have 3 Ds and a C, 

earning a total of 5.5.  Thus, in the next period, all of the borderline Ds will switch to 

Cs.  Each period, cooperation will spread two more rows23, until the whole of Donut 

world is playing C after two periods.  Again, we have a steady state equilibrium, but 

with all farmers adopting C , the opposite outcome to case 1. 

Fig.8.5 

Case 3:  As in cases 2, except that the square Torus is of odd size (e.g. 7x7) depicted 

in Fig 8.5. An exact 50/50 split is not possible here.  In this case, the top three rows all 

D;  the bottom three rows all C; the middle row will be a mixture of Cs and Ds.  Now, 

let us take the case where there are 24 Ds and 23 Cs: the middle row will have 4 Ds 

and 3 Cs alternating.  In effect, the middle border between the Cs and Ds is a zig-zag.  

Every border C  in row 4 will have 3 Ds  and one C as neighbours, thus earning 2;  2 

of the border Ds have 3 Cs and a D as neighbours and earn 8.5; the end two have two 

of each and earn 7.  Clearly, all of the Cs in the mixed border row 4 will switch to D.  

There are also 4 Cs in row 5  who have one D neighbour in the mixed row: they will 

be earning 6, and hence will also switch to D. Hence in period 2, row 4 has become 

all D and row 3 becomes mixed (the same as row 4 in the previous period).  At the 

same time, there is a straight border between row 1 (all D) and row 7 (all C).  As in 

case 2, the Ds in row 1 will all switch to C.  Hence, the sate of the Donut economy in 

period 2 is the same as period 1, except that it has  been “rotated”: the borders move 

“up” one each period (like an Escher figure, going up form row 7 means going to row 

1).  Thus any particular farmer will spend 3 (or 4) periods D and 4 (or 3) C depending 

in which column he finds himself.  This is the attractor of the imitation dynamics: it is 

not a steady state, but a cycle: it is rather like the human wave of hands that passes 

around the football stadium as people raise their arms up if the person next to them 

does. 
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What these three thought experiments show us is that in the world of local 

interaction, there is no inevitability about the Nash equilibrium coming about, even in 

the stark case of the PD where there is a dominant strategy.  We can get cycles (case 

3), or convergence to uniform populations of either all C (case 2) or all D (case 1). 

The history depends very much on the initial conditions and the exact structure of the 

payoff matrix. For example,  the larger ),( CDπ (i.e. a), the less likely is C to survive; 

also, the Cs need to live together and apart form the Ds to survive. 

 

In this section we have seen how social learning can be modelled in both a 

strategic and a non-strategic setting. Essentially, we can represent social interaction as 

a network (in the case of Donut world, a lattice Torus): agents repeatedly interact 

within a neighbourhood.  Clearly, Donut world looks a bit more like a real economy 

than the world of random matching.  However, lets go a step further and try to 

construct something that looks even more like an economy: time to move on to the 

Duopoly Archipelago, a place where all aspirations are met in the long run and 

everything is possible for he who decides to experiment. 

 

8.4  Economic Natural Selection: Keeping up with the 
Joneses. 
 

“The best monopoly profit is a quiet life''  John Hicks (1935). 

  

“This is the criterion by which the economic system selects survivors: those 

who realize positive profits are the survivors; those who suffer losses 

disappear'' Armen Alchian (1950, p.213). 

 

The idea of  Natural selection in economics is not new. It has long been argued that 

firms must earn at least normal-profits to survive in the long-run24. Failure to achieve 

this will activate some market mechanism which will lead to the ownership or the 

control of the firm changing.  These mechanisms include: 

 

• Bankruptcy: the firm becomes insolvent and is forced to stop trading. Its assets are 
then sold off. 
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• The shareholders replace the existing of managers. 

• The shares of the firm are purchased by the managers of another firm who replace 
the existing managers. 

• Debtors are able to reschedule outstanding debts and impose changes on the firm. 
 

In general, we can think of the mechanisms as reflecting the operation of the capital 

market in its widest sense.  The performance of a particular firm is measured against 

the performance of other firms.  The ultimate bottom line for the capital market is the 

profitability of the firm and its ability to deliver dividends to shareholders and/or keep 

up scheduled loan repayments.  An extreme form of failure is insolvency or 

bankruptcy which occurs when a firm is unable to cover its expenditure with current 

income: the cash coming is less than the liabilities it is incurring.  It is against the law 

to continue to trade when insolvent: when a company is insolvent an outside agent is 

called in to take over responsibility for the company (in Britain, this person is called 

the receiver).  The decision may be taken to liquidate the company: i.e. sell off its 

assets and meet as many of the outstanding liabilities as possible. Alternatively, the 

decision may be taken to find new managers to continue running the company as a 

going concern.  

 

 However, even if managers of the firm are making a profit and have no cash 

flow problems, there are still constraints.  There are a variety of benchmarks against 

which they are judged by the capital market. In the first instance, the benchmark is 

provided by similar firms in the same or related lines of business.  If firm X and firm 

Y are in the same industry, their profitability (rate of return on capital) should be the 

same: if firm X consistently under-performs relative to Y,  then this is a good 

indicator that the strategy of X is not the best.  However, in the long run, there is an 

arbitrage condition: the rate of return must be the same for all possible investments25. 

The argument here is the same as all arbitrage arguments: if your capital is earning 

less in one place than another, then shift it to the place earning more.  So, the capital 

market links together all of the firms in the Duopoly Archipelago.  Be they selling 

Pizzas, making air conditioners, or an airline, the capital market evaluates them and 

reduces the to the same thing: money  making machines.  The capital market requires 

them to be equally efficient money making machines. 
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The capital  market reflects the aggregate performance of the economy as 

represented by average profitability. In this paper the level of normal-profits is taken 

to be the average level of profits in the economy and explores the implications of this 

hypothesis in the context of an economy consisting of many oligopolistic markets. 

Under fairly general assumptions there are powerful long-run forces pushing the firms 

in each market towards collusion. What differentiates the approach here is that the 

evolution of the economy is inherently social, in that it is the level of average profits 

in the whole economy over time which drives the behaviour of firms.  

 

 In this section I model the behaviour of firms using an aspiration based model 

of bounded rationality. The key feature of this model  is to link together the 

aspirations of firms with the level of normal profit by requiring that in the long run 

the aspiration level of all firms is to have at least normal profits.  

 

8.4.1 Welcome to the Duopoly Archipelago. 

 

Imagine an archipelago of islands: each island represents a market.  On each island 

there are two firms.  The markets and firms on each island are the same in terms of 

size, costs and so on.  We can picture the economy in terms of  each island being 

having two houses (firms) linked by a single path.  The neighbourhoods of each firm 

consist only of its competitor on that island (the economy is not directly 

interconnected as in Donut world). 

 

Firms have a finite strategy set with  K pure strategies i,j=1…K. For 

concreteness, we can think of  the strategies as output levels Xi as previously, with no 

cost and linear demand.  We need assume very little about the structure of the payoff 

matrix Π of the constituent duopoly game, except that the joint-payoff can be 

maximized by a payoff-symmetric outcome.  An outcome can be thought of as a pair 

of strategies (i,j): it is payoff-symmetric if the payoffs are the same for both firms: 

π(i,j)= π(j,i).  Clearly, the leading diagonal of the matrix Π is payoff symmetric: 

however, it is possible in general that off diagonal terms might also be payoff 

symmetric.  In the case of outputs as strategies, the payoff symmetric outcomes will 

consist exclusively of the leading diagonal.  We will therefore assume for simplicity 
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that  equal profits for the duopolists on a particular island means that they are 

producing the same output (π(i,j)= π(j,i) implies i=j). 

 

 We will make the following assumption about the payoff matrix.  The state of 

a market is fully described by the pair of strategies chosen by the firms in that market: 

which firm chooses which does not matter (except, of course for the firms 

concerned!).  Suppose we are free to choose any pair of outputs {i,j}: the joint profit 

maximizing pair(s) S is (are)  the pair(s) that maximize the joint profits of the firms, 

with the maximum joint profits denoted JPM: 
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In the case of the simple Cournot oligopoly, S consists of the unique pair of outputs 

(½, ½), each firm producing half of the monopoly output: the JPM profits are then ¼ 

(each firm earns 1/8). Now, let us assume that we maximise joint profits, restricting 

ourselves to cases where both firms produce the same output:  
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Now, the assumption we need to make is that the joint profits are at their maximum 

when payoffs are symmetric.  One way of saying this is: 

 

Assumption 1:  JPM=SJPM.  

 

Clearly, this assumption is satisfied by the simple Cournot model we are using as an 

example.  If we consider the Prisoners Dilemma (PD), we have  
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There are two strategies: cooperate C or defect D. π(C,C)=2, π(C,D)=0, π(D,D)=0 and 

π(D,C)=a.  For this to be a PD we require a>2: it must pay to defect when the other 

person is cooperating: it also ensures that D is the dominant strategy.  However, 

assumption 1 will only be satisfied if a<4.  To see why, note that  if  a>4, then  
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Hence, for the model to apply to the PD we need to assume that a<4.  

  

When we look at the economy as a whole, we can summarise what it looks 

like in terms of the competition in each market.  One way to do this is to take each 

pair {i,j} and measure the proportion of markets (islands) which have firms playing 

this pair of strategies26,  P({i,j}).  Let P(S) be the proportion of markets where the 

firms are producing collusive outputs and hence earning the JPM profits.  

 

 So, here we have the Duopoly Archipelago.  On each island we have a 

duopoly of firms choosing an strategy pair.  We can describe the economy at any time 

t in terms of the proportions of markets having each possible pair.  As a last point, we 

have to think of the average profits in the whole economy.  This is simple to compute: 

we merely take the combined profits earned with each strategy pair {i,j} and then take 

a weighted average with the population proportions P({i,j}) as the weights. The 

average profits in the economy at time t are then 
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8.4.2 Aspirations in the Duopoly Archipelago. 

  

The concept of an aspiration level has been around for a long time. It has been put 

forward both as a good model of individual decision making in the mathematical 
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psychology literature ((Lewin (1936), Siegel (1957)) and as a model of organisational 

decision making with relevance to the firm (Cyert and March (1963), Kornai (1971) 

and Simon (1947)).  Although there are variations, the core idea is simple enough.  

When attempting to solve a problem, agents (let us think of these as firms) formulate 

a target: if they achieve this target they will probably stop searching. The aspiration 

level is a target to which the managers aspire and towards which they plan.  As such, 

the aspiration level is a search heuristic a bit like a stopping mechanism, as for 

example the reservation wage.  In the optimal search literature, the unemployed 

worker (for example) follows the rule: search until you receive an offer greater or 

equal to the reservation wage.  In fact, under various assumptions, one can derive this 

as an optimal stopping rule. The aspiration level is a target outcome: if the target is 

attained by a particular solution or action, then this plan is deemed acceptable and the 

search is stopped.  Of course, aspiration levels can be adjusted in response to 

experience of the decision makers themselves and outside events.  The literature on 

aspirations does not conceive of the aspiration levels coming from some optimising 

process:  rather it is a boundedly rational attempt to find a good solution. 

   

The aspiration level here has two elements.  First, there is the aspiration level 

as representing external forces imposed upon the firm or managers from outside (i.e. 

the capital market). This is represented by the role of average profitability as an 

external benchmark for “normal” profits.  Second there is the subjective element 

inside the corporate mind, the targets that come up from the interpersonal interaction  

of  managers and others within the firm. In this model, firms at any time adopt a pure-

strategy27. Each firm follows the following simple learning rule. It has an aspiration 

level α(t). If it is earning less than α(t), then it decides to experiment with probability 

1; if the firm is earning at least α(t),  then it will continue with the existing strategy 

(this is Hick's ''quiet life'' alluded to in the above quote – if it aint bust, then don’t fix 

it). 

 

For simplicity, we assume that all firms share the same aspiration level28, with 

the aspiration level satisfying the condition that in the long-run it has to be no less 

than average profits. This seems a reasonable assumption reflecting the role of capital 

markets in industrialized economies. This means that the aspiration level is 
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endogenous (as in Borgers and Sarin (1997), Karandikar et al (1998), Palomino and 

Vega-Redonodo (1999)), reflecting the past and the current profitability of the 

economy. his might well reflect form specific factors and the history of the individual 

firm. The assumption we make is that whatever other internal or external factors there 

are, in the long run the capital market must be satisfied.   In fact, we do not have to 

make explicit the mechanism generating aspirations: we merely impose the following  

conditions on their evolution  (sorry if it looks too technical: just jump to the next 

paragraph if you do not like the look of it). 
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Part (a) says that in the long-run (as t tends to infinity), the aspiration level αt  must be 

at least equal to average profits )(tΠ .  Part (b) also says that firms must not be 

overoptimistic: the highest realistic aspiration for the firms is that they can earn the 

JPM profit.   

  

Well, we can make things really simple: this assumption is satisfied if  in each 

period the aspiration level equals the current average profitability 

 

)()( tt Π=α  

 

Well, the aspiration level model here gives the mechanism determining the 

experimentation by firms.  Experimentation here means that the firm tries to alter 

strategy.  The question we next ask is: what determines the probabilitiy that the firm 

switches from its existing strategy to another, the switching probabilities. 

 

 The actual switching probability may be determined by many things: the 

experience of the firm, what other firms are doing (through imitation), or by strategic 

considerations (as in best response dynamics). There might also be some randomness 

or “noise” in the switching process: mistakes are made, or policies improperly 
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implemented and so on.  This might be very complex to model in detail.  However, 

we make the following general assumption about switching probabilities: 

 

Assumption: switching probabilities. There exists some γ>0 such that all switching 
probabilities exceed γ. 
 

What this means is that anything is possible: there is a small but strictly positive 

probability γ that the firm will choose any particular strategy.  Of course, some 

strategies might be much more likely to be chosen: however, no strategy is ruled out.  

This is not as odd as it sounds: firms sometimes do things that seem pretty stupid with 

hindsight but looked good at the time!  

 

Whilst we have interpreted switching behaviour as the same firm in two 

periods changing behaviour, the formal model would be exactly the same if we think 

of a different firm in each period. For example, a firm in a particular market might 

exit (due to bankruptcy or death). In this case the switching probability would pertain 

to the ”place”of the firm: the probability that next period the firm taking the place of 

the existing firm would play a particular strategy. 

 

8.4.3  The Evolution of  Collusion in the Archipelago Duopoly. 

 

So, we have set up this archipelago economy, describing the na ture of markets 

(summarised by the payoff matrix) and the behaviour of firms (aspirations and 

switching probabilities).  What happens to it?  Well, this is easy to describe.  Let us 

take for simplicity the simplest case where the aspiration level at any time t equals the 

average profitability, )()( tt Π=α .  Hence, at period t, we can divide market/islands 

into three categories: 

 

• Above aspiration:  Both firms are earning at or above the average. If both firms 

are above aspiration, then they will just keep on doing what they are doing. 
 
• Below aspiration: both firms are earning below average profit. both will 

experiment: under the assumption that switching probabilities are all strictly 
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positive, if both firms are experimenting, then anything can happen!  There is a 
strictly positive probability that any pair of outputs/strategies will be chosen. 

 
• Mixed: one firm above, one below.  In this case, the firm that is meeting its 

aspiration keeps on with its existing strategy: the one that isn’t experiments. 
 

Now, the exact evolution of this economy will be quite complex and depend on the 

exact switching rules used etc.  However, we can say something in general that will 

hold for all archipelago economies that satisfy the 3 assumptions we have made: 

namely (a) that the payoff matrix has the property that joint profit is maximised with 

equal profits for both firms; (b) that aspirations tend to average profit in the long run; 

(c) that when experimenting, anything is possible. 

 

 First, consider any industry where both firms are choosing the collusive 

strategy and earning JPM.  Clearly, it is never possible for average profits to exceed 

JPM: )(tJPM Π≥ .   Whilst it is possible for an individual firm to earn in excess of 

JPM, it is not possible for two firms in the same industry, nor for all firm in the 

economy.  Hence, industries that are collusive will necessarily be in the above 

aspiration category. Furthermore, once and industry arrives at collusion it will stay 

there forever!  In technical terms, this is called an absorbing state: once you arrive in 

this state, you are “absorbed” and never leave it.  It is a bit like the cockroach motel:  

the roaches check in, but never check out.  An astronomical analogy is a black hole: 

matter goes in but never comes out again29.  So, over time, we can be sure that the 

proportion of  industries in the economy which are collusive will never get smaller: it 

must either grow or at least stay constant .  In the case of Cournot duopoly, the 

collusive outcome involves both firms producing an output of 0.25 and earning 0.125 

each. 

 

 Second, let us consider the case of industries where both firms are below 

aspiration.  These will tend to be competitive industries, where both firms are 

producing a large output and earning low profits. Both firms will be experimenting: 

hence literally any outcome (i.e. strategy pair) is possible, including the collusive 

outcome.  There is a strictly positive probability that both firms will choose the 

collusive outcome.  Looking at the economy as a whole, we will observe a strictly 
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positive flow from those industries that are below aspiration into the collusive 

absorbing state.   

 

 Let us put these two facts together:  once you become collusive, then you 

remain collusive;  a proportion of below aspiration industries become collusive.  In 

the end, if we look at the long run of the economy, we can see that the proportion of 

firms below aspiration must eventually disappear: they will be absorbed by the 

collusive state that is in the above aspiration category.  This means that in the end, 

there can only be two categories of  firms left: the above aspiration and the mixed.   

 

 Third, consider the mixed aspiration category. The mixed aspiration category 

cannot survive in the long run either.  To see why, just note that there is a continual 

flow of industries from the mixed to either  the above aspiration or the below 

aspiration categories.  To see why, note that under the assumption that all switching 

probabilities are strictly positive,  there is a positive probability that the below 

aspiration firm in a mixed industry will choose the same strategy as its competitor.  If 

this happens, then the next period both firms will be earning the same profit and hence 

be either both above or both below aspiration.  Since the proportion of industries with 

both firms below aspiration must go to zero in the long run, this flow from mixed 

industries must in the long run be to above aspiration industries, with the proportion 

of mixed industries going to zero.   

 

 Finally, consider the above aspiration category excluding the collusive 

industries.  Since the proportions of firms with one or both firms below aspiration 

goes to zero over time, it follows that all industries must be above aspiration.  

However, how can all firms be at or above the average?  Well, there are two ways.  

First, all industries arrive at the situation where they are all in the same payoff 

symmetric state: i.e. all firms choose the same output levels.  This could happen at 

any level of competition.  Secondly, if at the start (or at anytime) there are some 

collusive industries, then the only possible long-run state is for all industries to be 

colluding.  If there are some colluding industries at any time, then they will not go 

away.  There is then no possibility that the rest of the economy can persist in a state 

which earns less than JPM.  
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Fig 8.6 
 
In Figure 8.6 we depict the flows of  markets between the different categories.  At the 

top is the roach motel: the absorbing collusive state.  Below that are the other above 

aspiration industries.  On the bottom are the two mixed and below aspiration 

industries.  Now, clearly, under the switching assumption, there are outflows from the 

below aspiration set to all of the others (anything is possible) every period.  Likewise, 

there are flows from the mixed industries: again, they can go to all of the other 

categories, except that the flows need not be active every period (it depends exactly 

which pairs are involved).  Lastly, there are flows from the above aspiration group to 

both the mixed and below aspiration groups. These flows occur not due to switching, 

but changes in the aspiration level: if the aspiration level rises (as average profits 

rise), then the current profits of firms in these industries may be below the new 

aspiration level.  We can see that there is a continuous flow between the various 

categories: but every period, some firms will end up in the absorbing collusive state. 

There is no way for industries to escape it in the long run! 

 
In essence, the argument is that in the long-run, all firms need to earn at least 

the average profit.  Assuming that there are some industries (even a very small 

proportion) colluding at some point, then for all firms to earn average profits mean 

that they must collude and earn JPM. 

 

Theorem: the Inevitability of Collusion (Dixon 2000).   Suppose 
that at some time there are some collusive industries.  Then under 
the assumptions, in the long all industries will collude. 
 

 

This is a remarkable result.  It shows that the pressure of the capital market on firms 

will force them to collude: competition cannot survive!  Let us just think how this 

works, the forces involved.  

 

First, let us think how can collusion persist, how can it be stable:?  We all 

know the standard arguments that there is an incentive to deviate from a collusive 

output: one of the firms can earn higher profits if it deviates by (for example) 

producing a larger output. Suppose that one firm does this.  Then it will increase its 
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own profits, but reduce the other firms profits (and reduce the combined profits).  The 

other firm will now be below aspiration, and hence it will start to experiment: for 

example it may produce a larger output.  Then both firms will become below 

aspiration and continue to experiment until both firms are above aspiration: i.e. 

collusive!  We can think of the period of experimentation following the defection as a 

analogous to a punishment (as discussed in oligopoly theory made simple).  Whilst 

there is no sense in which the punishment is optimal, it will act in a similar fashion. 

The point is that although aggressive or competitive behaviour might bring a higher 

payoff in the short run, it cannot survive in the long run.  The reason is that it will 

generate a response from the competitor, which will set the industry in motion until it 

can settle down into a situation where both firms are earning average/normal profits.  

This is not unrealistic: firms who are very aggressive towards rivals will become 

involved in price wars and similar episodes.  Their shareholders might well prefer 

them to reap the rewards of a cosier relationship with competitors.   

 

The implications of this result might be taken as quite far reaching: we should 

expect the operation of capital market pressures to enforce collusion, not competition.  

Competition tends to reduces profits, at least in the long run, and hence cannot be 

sustained in the long run. The model as presented did not include entry. However, 

entry per se need not alter the result.  If there is a fixed number of firms in the 

industry (two or more), then the same arguments will indicate that collusion will be 

established between them.  Now suppose that we impose an entry condition on the 

economy.  One way to do this is to divide the model into to stages: first an entry phase 

and then the market phase.  There is a fixed set up cost. With free entry, entry will 

occur to the point where expected profits are zero.  If we take expected profits as the 

long run steady state profits (i.e. JPM), then the JPM per firm will equal the entry 

cost.  Given the free entry equilibrium number of firms, the equilibrium will be 

collusive: free entry just drives the average profit to zero.  It is perhaps worth looking 

briefly at an example of how the heorem might work out in a concrete example. 
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8.4.5 An example: Cournot Duopoly. 

 

Perhaps the simplest economic application of our model is to the Cournot duopoly 

model with linear demand and without costs which we have considered earlier.  

Recall that JPM is 0.125, and is maximised by the output pair (0.25, 0.25).   

  

We30 allowed for K=21 types of firm (not just the three {A,B,C}).  To do this, we 

chose a grid of granularity 0.025 over the range 31  0.1 to 0.6, perturbing it slightly by 

moving 0.325 to 0.333 (1/3), so that the Cournot-Nash output was included. Hence 

K=21 and  there are 231 possible pairs of output.  We assumed that there is random 

switching: if a firm decides to experiment, it chooses each of the 21 strategies with a 

probability of 1/21.  

 The simulations were initiated from the initial position with a uniform 

distribution over all pairs. The results of the simulation are depicted in Figures 8.7a 

and 8.7b. In Figure 8.7b, we see the path of average profits over time: in Figure 8.7a 

the evolution of population proportions of the JPM market (0.125, 0.125) and the 

symmetric Cournot market are depicted (note that the proportions are measured on a 

logarithmic scale). 

 

Fig 8.7a and 8.7b here. 

 

From Fig 8.7b, we see that the average profits converge to the symmetric joint profit 

maximum of 0.125. However, the time path of profits is non-monotonic: at particular 

times there appear large drops in profit. The reason for this is quite intuitive. As the 

average profit level increases, it surpasses that of one or both firms, which start to 

experiment. The profits of firms at those markets will then on average fall below the 

population average as the firms disperse over some or all output pairs. The effect of 

this can be quite dramatic: the discontinuity is particularly large when a symmetric 

market goes critical, since both firms at each such market begin to experiment and 

spread across all possible output pairs. However, whilst the time-series of profits is 

non-monotonic and ``discontinuous'', there is a clear upward trend and convergence to 

0.125. 



Donut world and the Duopoly Archipelago.                                                                   05/07/07 

32 

 From Figure 8.7a, the proportion of colluding firms (P(S))  is monotonic, but 

far from smooth. Corresponding to the discontinuous falls in population average 

profit, there are jumps in the proportion of firms at the JPM market, corresponding to 

the jumps in average profit. The proportion of firms at the Cournot pair (1/3,1/3) is a 

highly non-monotonic time series. The first thing to note is that in the initial stages of 

the simulation, the proportion of Cournot markets exceeds the proportion of JPM 

markets. This can occur because during this period the Cournot pair is also in the 

above aspiration set: until average profits reach 1/9, the Cournot pair will ``absorb'' 

markets with one or both firms below aspiration. The fact that the Cournot pair 

attracts more than JPM is due to the fact that early on more markets  with 

experimenting firms can reach the Cournot pair than the JPM pair. However, after 50 

iterations, the Cournot pair has a smaller proportion than the JPM pair, and is in the 

below aspiration category most of the time. The time-series of the Cournot market 

type is not atypical: most pairs except JPM have a similar time-series profile. The 

convergence of the proportion of markets towards type JPM is steady but slow: this is 

because the probability of hitting JPM from other locations is small throughout the 

simulation: from each market in which both firms experiment there is a probability of 

1/442 of moving to JPM. Convergence is in general quicker with fewer strategies and 

non-random switching rules. We explore more specific rules (imitation, best reponse 

etc.) in the Cournot model using simulations in Dixon and Lupi (1997). 

 

9.5  Conclusion: how economists can get smarter by making 

agents dumber? 

 
In this chapter we have gone round in historical circles, traversed the surface of a 

donut and visited the duopoly archipelago.   What have we learned?  Well, I think that 

we can see that if we are willing to assume that economic agents are intelligent rather 

than having some abstract notion of “perfect rationality”, we can learn quite a bit.  

Agents interact in a social situation and can learn, both from their own experience, 

and the experience of others (either their neighbours or the general population).  If we 

assume that agents have some ethereal notion of perfect rationality, then we cannot 

begin to understand this.  To assume that agents are perfectly rational means that we 

have to adopt a framework where they are able to understand what is going on in 
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some significant sense.  However, perfectly rational agents can only solve problems 

we can solve, and we can solve only very simple problems.  So, if we stick with 

perfectly rational agents, we will restrict our vision to simple models.   

 

In this chapter I have outlined the possibility of an alternative approach.  Let 

us assume that agents are boundedly rational: they may even be completely dumb, or 

just use some rules for updating that are intelligent but not in any sense optimal.  In 

terms of  Artificial intelligence and economic theory, we are adopting a specific 

model of reasoning where we specify what the agents think, how they think (I am 

using “think” in a broad sense here, since most economic agents are not individuals).  

We can then model the interaction of agents in some sort of network.    The networks 

we have looked at are very simple.  However, in principle we can at least imagine the 

economy as an extremely complicated network: a network possibly as complicated as 

the neural networks in the human brain or possibly even more complicated.  There 

may have different levels of organisation: for example in the Duopoly Archipelago 

the capital market worked at the aggregate level, imposing the population average on 

the individual firms.   These levels can then interact and yield interesting and novel 

outcomes.  In the Duopoly Archipelago,  if the duopolists were all playing a 

prisoner’s dilemma, then they would (in the long-run) be forced to collude.  Thus the 

economy is operating in such a way that individual agents are forced to choose a 

strategy that is dominated.  In a more general context an agents actions in equilibrium  

may well be far from optimal.  Note that I am using optimal in a private sense: the 

individual firms are not choosing their best responses to each other (failure of private 

optimality) and also the outcome is not socially optimal.  Whilst it is true that 

collusion maximizes the joint profits of the firms, the consumers (whose welfare does 

not appear in the payoff matrix) lose out. 

 

In this sense I think I have answered my own challenge put forward in 

Artificial intelligence and economic theory: there may be strong forces in an economy 

leading agents away from optimising behaviour in strategic situations.  Optimising 

behaviour can only survive or predominate if it earns higher profits than non-optimal 

behaviour.  In non-strategic situations this is no longer true.  As we saw in oligopoly 

theory made simple, non-profit maximizing managers may in the end earn more than 

profit maximizers.  When ignorance is bliss, ‘tis indeed folly to be wise. Since most 
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economic interactions are indeed strategic, we should certainly not assume that 

agents optimise all of the time.   

 
Economists have tended to ignore these higher level (non- local) interactions 

and focus on isolated pairs of  players, or overlapping networks of neighbourhoods.  

However, in the information age the economy is becoming explicitly and consciously 

inter-connected: this self-knowledge imperfectly reflects and mirrors the objective 

interconnectedness of the economy revealed in the story of infinity in a pencil.   

Higher levels of organisation exist: in particular capital markets and to a lesser extent 

labour markets bring together different markets and parts of the economy.   This is 

something that economists really need to focus on in some detail in the years ahead.  

Rather than pondering the deliberations of rational agents interacting alone or in 

isolated pairs, the focus should be more on intelligent agents interacting in social 

systems. 
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Endnotes. 
                                                                 
1 For the many examples of  systematic and common behaviour that violates 

conventional axioms, see Thaler’s various books: Thaler (1991, 1992, 1993) 
2 And other areas: for example Sargent (1993) for applications to macroeconomics. 
3 Nearly all rational agents in game theory papers are female nowadays: they were 

mainly male before the mid-1980s. 
4 Economists are not alone here.  Philosophers have tried to do the same thing: for 

example deriving moral laws from some abstract notion of rationality.  I doesn’t work 

there either! 
5 I am simplifying things rather a lot here: for a detailed and clear exposition of the 

process of evolution, you can do no better than reading Dawkins (1986). 
6 The biologist Lamark had different ideas.  He thought that characteristics acquired 

during a parents life could be passed on.  In Biology this has been shown to be 

incorrect.  However, in terms of social learning it is almost certainly correct. 
7 Again, whilst it is clear that Cournot was the first person to introduce the concept of 

the Nash equilibrium, I follow common usage in naming it after Nash.   Economists 

used to often call the “Nash” equilibrium a “Cournot” equilibrium.  With the spread 

of game theory in the early 1980s, this usage dropped out.  
8 i is called the “row” player, because his choice of strategy determines which row we 

are on: likewise j is the column player. 
9 This is a special case of the class of payoff monotone selection dynamics in which 
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10 Throughout this section, we adopt the simplification that there are only “pure” 

strategies and no “mixed” strategies.  Game Theorists are much keener on mixed 

strategies than economists,  the whole concept being somewhat problematic.  

However, for those who want the “proper” definition, see the Weibull (1995) chapter 

2. 
11 Note that the alien invaders are subject to the same random matching process: they 

do not arrive by one ship and spread out as in the film version, but arrive as random 

individuals. 
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12 Note that if the replicator dynamics has an attractor, it need not be ESS: the attractor 

of a dynamic system might be a limit cycle or a non-ESS steady state. 
13 An alternative concept of stability is Lyapunov stability.  A steady state is 

Lyapunov stable if a small deviation does not lead to any further deviation (it need not 

actually return to the steady state as is required by the asymptotic stability concept). 
14 To be accurate, we are assuming that P=min[0,1-Xi-Xj] to secure this result. 
15 The analysis here has been brief. For a full if technical analysis of the relationships 

between the three concepts, see Weibull (1995, chapters 2 and 3). 
16 In fact, the fancy names for all these things comes from Graph Theory: the houses 

are usually called nodes, and the paths connecting them vertices. 
17 The reason it will not work is that to get the donut you need to stretch some parts 

and compress others.  So, if you want to make a donut shape, use a sheet of stretch 

material. First make a cylinder and then join the ends together. 
18 Well, any topologically equivalent shape to a circle, i.e. any line which does not 

cross itself and has no ends. 
19 The two dimensionality of the earth’s surface is reflected in the fact the each point 

on the surface can be represented by two numbers: its longitude and latitude. 
20 I leave out the possibilities of pollution from pesticides, fertilisers and GM crops. 
21 The male pronoun does not reflect any presumed irrationality on the part of 

farmers, although it certainly helps to be crazy if you are a farmer nowadays. 
22 We can see the “imitate your best neighbour” as a heuristic algortithm as discussed 

in Artificial Economics and Economics.  
23 Remember, since the top and the bottom are connected, there are two borders. 
24 There are obvious exceptions here, such as non-profit organisations, owner 

managed firms.  However, all commercial organisations are covered by bankruptcy 

laws and the requirement to be solvent (i.e. a positive cash flow). 
25 Well, this needs to be adjusted for risk: the risk-adjusted rate of return needs to be 

equalised across all industries and firms. 
26 In fact, since the identity of the firms is irrelevant, we treat {i,j} as identical to{j,i}: 

hence without loss of generality we write the pairs as {i,j} with i < j. 
27 As in the Atkinson and Suppes (1958) ``finite Markov model'', where there is a 

probability that at time t+1 the firm will switch from the strategy it plays at t: the key 

difference with the present paper is that we use an explicit aspiration based model. 
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28 It is straight forward to allow for firm specific aspirations. 
29 In fact, as the British physicist Stephen Hawkins discovered, due to weird quantum 

effects, black holes do radiate a bit, so matter does escape. 
30 I would like to thank Paolo Lupi for implementing this programme in Gauss. 
31 We did not allow for a wider grid range (e.g. [0,1]), because the additional 

strategies are often ones with very low or zero profits: they slow down the simulation 

without adding any extra insight 
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