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Chapter 6. Oligopoly Theory Made Simple 
 

6.1 Introduction. 
 
Oligopoly theory lies at the heart of industrial organisation (IO) since its object of 

study is the interdependence of firms.  Much of traditional micro-economics presumes 

that firms act as passive price-takers, and thus avoids the complex issues involved in 

understanding firms’ behaviour in an interdependent environment.  As such, recent 

developments in oligopoly theory cover most or all areas of theoretical IO, and 

particularly the “new” IO.  This survey is therefore very selective in the material it 

surveys: the goal is to present some of the basic or “core” results of oligopoly theory 

that thave a general relevance to IO. 

 The recent development of oligopoly theory is inextricably bound up with 

developments in abstract game theory.  New results in game theory have often been 

applied first in the area of oligopoly (for example, the application of mixed strategies 

in the 1950s – see Shubik 1959, and more recently the use of subgame perfection to 

model credibility).  The flow is often in the opposite direction: most recently, the 

development of sequential equilibria by Kreps, Milgrom, Roberts, and Wilson arose 

out of modelling reputational effects in oligopoly markets.  Over recent years, with 

the new IO, the relationship with game theory has become closer.  This chapter 

therefore opens with a review of the basic equilibrium concepts employed in the IO – 

Nash equilibrium, perfect equilibrium, and sequential equilibrium. 

 The basic methodology of the new IO is neo-classical: oligopolistic rivalry is 

studied from an equilibrium perspective, with maximising firms, and uncertainty is 

dealt with by expected profit of payoff maximization. However, the subject matter of 

the new IO differs significantly from the neo-classical micro-economics of the 

standard textbook.  Most importantly, much of the new IO focuses on the process of 

competition over time, and on the effects of imperfect information and uncertainty.  

As such, it has expanded its vision from static models to consider aspects of 

phenomena which Austrian economists have long been emphasising, albeit with a 

rather different methodology. 

 The outline of the chapter is as follows.  After describing the basic equilibrium 

concepts in an abstract manner in the first section, the subsequent two sections 

explore and contrast the two basic static equilibria employed by oligopoly theory to 

model product market competition – Bertrand (price) competition, and Cournot 
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(quantity) competition.  These two approaches yield very different results in terms of 

the degree of competition, the nature of the first-mover advantage, and the 

relationship between market structure (concentration) and the price-cost margin. 

 The fourth section moves on to consider the incentive of firms to precommit 

themselves in sequential models; how firms can use irreversible decisions such as 

investment or choice of managers to influence the market outcome in their favour.  

This approach employs the notion of subgame perfect equilibria, and can shed light on 

such issues as whether or not oligopolists will overinvest, and why non-profit 

maximizing managers might be more profitable for their firm than profit maximizers.  

The fifth section explores competition over time, and focuses on the results that have 

been obtained in game-theoretic literature on repeated games with perfect and 

imperfect information.  This analysis centres on the extent to which collusive 

outcomes can be supported over time by credible threats, and the influence of 

imperfect information on a firm’s behaviour in such a situation.  Alas, many areas of 

equal interest have had to be omitted – notably the literature on product 

differentiation, advertising, information transmission, and price wars.  References are 

given for these in the final section. 

 Lastly, a word on style.  I have made the exposition of this chapter as simple as 

possible.  Throughout the chapter I employ a simple linearized model as an example 

to illustrate the mechanics of the ideas introduced.  I hope that readers will find this 

useful, and I believe that it is a vital complement to general conceptual understanding.  

For those readers who appreciate a more rigorous and general mathematical 

exposition, I apologise in advance for what may seem sloppy in places.  I believe, 

however, that many of the basic concepts of oligopoly theory are sufficiently clear to 

be understood without a general analysis, and that they deserve a wider audience than 

a more formal exposition would receive. 

 

6.2 Non-cooperative equilibrium 
 
The basic equilibrium concept employed most commonly in oligopoly theory is that 

of the Nash equilibrium, which originated in Cournot’s analysis of duopoly (1838).  

The Nash equilibrium applies best in situations of a one-off game with perfect 

information.  However, if firms compete repeatedly over time, or have imperfect 

information, then the basic equilibrium concept needs to be refined.  Two commonly 
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used equilibrium concepts in repeated games are those of subgame perfection (Selten 

1965), and if information is imperfect, sequential equilibria (Kreps et al. 1982). 

 We shall first introduce the idea of a Nash equilibrium formally, using some of the 

terminology of game theory.  There are n firms, i = 1, who each choose some strategy 

ai from a set of feasible actions Ai.  The firm’s strategy might be one variable 

(price/quantity/R&D) or a vector of variables.  For simplicity, we will take the case 

where each firm chooses one variable only.  We can summarize what each and every 

firm does by the n-vector (a1, a2 …, an).  The “payoff” function shows the firm’s 

profits iπ  as a function of the strategies of each firm: 

 

  iπ  = iπ (a1, a2, …, an)                                                                                         (1) 
 
 The payoff function essentially describes the market environment in which the 

firms operate, and will embody all the relevant information about demand, costs and 

so on.  What will happen in this market?  A Nash equilibrium is one possibility, and is 

based on the idea that firms choose their strategies non-cooperatively.  A Nash 

equilibrium occurs when each firm is choosing its strategy optimally, given the 

strategies of the other firms.  Formally, the Nash equilibrium is an n-vector of 

strategies ( ∗∗∗
naaa ...,, 21 ) such that for each firm i, ∗

ia  yields maximum profits given the 

strategies of the n – 1 other firms ∗
− ia .1  That is, for each firm: 

 

  ),(),( ∗
−

∗
−

∗ ≥ iiiiii aaaa ππ                    (2) 

 
for all feasible strategies ai ∈ Ai.  The Nash equilibrium is often defined using the 

concept of a reaction function.  A reaction function for firm i gives its best response 

given what the other forms are doing.  In a Nash equilibrium, each firm will be on its 

reaction function. 

 Why is the Nash equilibrium so commonly employed in oligopoly theory?  Firstly, 

because no firm acting on its own has any incentive to deviate from the equilibrium.  

Secondly, if all firms expect a Nash equilibrium to occur, they will choose their Nash 

equilibrium strategy, since this is their best response to what they expect the other 

firms to do.  Only a Nash equilibrium can be consistent with this rational anticipation 
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on the part of firms.  Of course, a Nash equilibrium may not exist, and there may be 

multiple equilibria.  There are many results in game theory relating to the existence of 

Nash equilibrium.  For the purpose of inductrial economics, however, perhaps the 

most relevant is that if the payoff functions are continuous and strictly concave in 

each firm’s own strategy then at least one equilibrium exists.2  Uniqueness is rather 

harder to ensure, although industrial economists usually make strong enough 

assumptions to ensure uniqueness.3 

 If market competition is seen as occurring over time, it may be inappropriate to 

employ a one-shot model as above.  In a repeated game the one-shot constituent game 

is repeated over T periods (where T may be finite or infinite).  Rather than simply 

choosing a one-off action, firms will choose an action ait in each period t = 1…, T.  

For repeated games, the most commonly used equilibrium concept in recent oligopoly 

theory literature is that of subgame perfection which was first formalised by Selten 

(1965), although the idea had been used informally (e.g. Cyert and De Groot 1970).  

At each time t, the firm will decide on its action ait given the past history of the 

market ht, which will include the previous moves by all firms in the market. 

 A firm’s “strategy” in the repeated game4 is simply a ruleσ i which the firm adopts 

to choose its action ait at each period given the history of the market up to then, ht: 

 

  ait = σ i (ht) 
 
If we employ the standard Nash equilibrium approach, an equilibrium in the repeated 

game is simply n strategies( ∗∗∗
nσσσ ...,, 21 ) such that each firm’s strategy  ∗

iσ  is 

optimal given the other firms’ strategies ∗
− iσ .  Thus no firm can improve its payoff by 

choosing a different strategy, given the strategies of the other firms.  

 However,  a major criticism of using the standard Nash equilibrium in repeated 

games is that it allows firms to make “threats” which are not credible, in the sense 

that it would not be in their interest to carry out the threat.  For example, consider the 

example of entry deterrence, with two periods.  In the first period, the entrant decides 

whether or not to enter.  In the second period, the entrant and incumbent choose 

outputs.  The incumbent could adopt the following strategy: if entry does not occur, 

produce the monopoly output.  If entry does occur, produce a very large output which 

drives down the price below costs at whatever output is chosen by the entrant.  In 

effect, the entrant is posed with a powerful threat by the incumbent: “if you enter,  I’ll 
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flood the market and we’ll both lose money”.  Clearly, with this powerful threat, the 

incumbent will be able to deter any entry.  However, it is not a credible threat: if entry 

were to occur, then the incumbent would not wish to carry out this potent threat.  Thus 

the incumbent’s strategy is not credible, since he would be making unnecessary 

losses. 

 Subgame perfection was formulated to restrict firms to credible strategies.  The 

basic idea of subgame perfection is quite simple.  In a Nash equilibrium the firm 

chooses its strategy σ i “once and for all” at the beginning of the game, and is 

committed to it throughout the play (as in the above example).  To rule out non-

credible threats, however, in a subgame-perfect equilibrium, at each point in time  

firms choose their strategy for the rest of the game. The “subgame” at any time t is 

simply the remainder of the game from t through to the last period T.  Subgame 

perfection requires that the strategies chosen are Nash equilibria in each subgame.  

This rules out non-credible threats, since in effect it requires a firm to choose its 

strategy optimally at each stage in the game.  In our example, the incumbent’s threat 

to expand output is not “credible”: in the subgame consisting of the second period, it 

is not a Nash equilibrium.  Indeed, if the market is Cournot and there is a unique 

Cournot equilibrium, then the unique subgame-perfect strategy for the incumbent 

involves producing the Cournot output if entry has occurred.  One of the major 

attractions of subgame perfection is that it narrows down the number of equilibria: 

there are often multiple Nash equilibria in repeated games and imposing “credibility” 

on strategies can reduce the number considerably, at least in finitely repeated games. 

 With imperfect information, a commonly used equilibrium concept is that of a 

“sequential” equilibrium (Kreps et al. 1982).  This is formally a rather complex 

concept, but we shall provide a simple example in the section “competition over 

time”.  The basic idea of subgame perfection is employed, with the added ingredient 

of Bayesian updating of information.5  Firms may be uncertain about each other’s 

payoff functions (e.g. they do not know each other’s costs or each other’s objectives).  

At the start of the game, firms have certain prior beliefs, which they then update 

through the game.  Firms may be able to learn something about each other from each 

other’s actions.  In such a situation, firms of a certain type may be able to build a 

“reputation” by taking actions which distinguish themselves from firms of another 

type.  For example, in Milgrom and Robets’ (1982b) paper on entry deterrence, low-

cost incumbents are able to distinguish themselves from high-cost incumbents by 
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following a “limit pricing” strategy which it is unprofitable for high-cost firms to 

pursue.  These reputational equilibria are very important since they can explain how 

firms might behave against their short-run interest in order to preserve their reputation 

intact, for example as a low-cost firm or as an aggressive competitor. 

 
6.3 Cournot and Bertrand equilibria with homogeneous products 
 
The previous section considered the concept of a Nash equilibrium in purely abstract 

terms.  To make the concept concrete we need to specifiy the exact nature of the 

strategies chosen and define the payoff function.  Corporate strategy is, of course, 

very broad embracing all the activities of the firm – price, output, investment, 

advertising, R & D and so on.  In practice, oligopoly theory abstracts from the 

complexity of real- life corporate strategy and concentrates on just one or two strategic 

variables.  There are two basic ways of modelling how firms compete in the market.  

The first takes the view that the firm’s strategic variable is its output and originates in 

Cournot (1838).  The second takes the view that the firm’s basic strategic variable is 

price and, originates in the work of Bertrand (1883), Edgeworth (1925) and more 

recently in models of imperfect competition with product differentiation (e.g. 

Chamberlin 1933; Dixit and Stiglitz 1977). 

 As we shall see, whether price or output is the strategy makes a difference to the 

equilibrium outcome.  For example, one of the basic issues of interest to industrial 

economists is the relationship between concentration and the price-cost margin.  The 

standard notion that higher concentration leads to a higher price-cost margin is based 

on the Cournot view, and does not hold in the Bertrand framework where there can be 

a perfectly competitive outcome with two or more firms.  The distinction between 

price and quantity setting in the context of oligopoly is not present in monopoly, 

where it makes no difference whether the monopolist chooses a price or quantity (the 

monopolist simply chooses a point on its demand curve).  In order to capture the 

distinction between the Cournot and Bertrand framework in its starkest form, we will 

first consider the simplest case of homogeneous goods. We will then discuss what 

arguments there are for choosing between the two competing approaches to modelling 

product market competition.  In the next section we will pursue this fundamental 

dichotomy further in the context of the more realistic case of differentiated 

commodities. 
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6.3.1 Cournot-Nash equilibrium with homogeneous goods  
 
The basic view of the market taken by Cournot was that firms choose their outputs 

and that the market then “clears” given the total output of firms.  There are n firms  

i = 1 …, n, which produce outputs xi, industry output being ∑ =
=

n

i ixx
1

.  We will 

make the simplest possible assumption about demand and costs: 

 

 A1  Industry demand   P = 1 - ∑
=

n

i
ix

1

              (3) 

 
 A2  Firm’s costs    c(xi) = cxi 
 
Equation (3) is called the inverse industry demand function.  Normally the industry 

demand curve is seen as arising from the utility-maximizing behaviour of consumers 

– the market demand curve tells us how much households wish to buy at a given 

price.  The mathematical operation of taking the inverse, as in (3), has important 

economic implications: it assumes that there can only be one “market” price.  Thus 

firms have no direct control over the price of their output, only an indirect control via 

the effect that changes in their own output have on the total industry output. 

 Given A1 – A2, we can define the firm’s payoff function which gives firm i’s 

profits as a function of the outputs chosen: 

 

  ∑
=

−−=
n

j
ijini cxxxxxx

1
2,1 )1(),...(π  

                             (4) 
  ∑

≠

−−−=
ij

ijiii cxxxxx 2  

 
 Each firm has a reaction function, which gives its profit-maximizing output as a 

function of the outputs chosen by the other firms.  Since firm i treats the output of the 

other firm j ?  i as fixed, the first-order condition for maximizing (4) with respect to xi 

is6: 

 

  ∑
≠

=−−−=
∂
∂

ij
ij

i

i cxx
x

021
π

  

 
Solving this defines the reaction function for firm i: 
 



Oligopoly made simple  
05/07/07 

8 

  
2

1 ∑ ≠
−−

=

n

ij j

i

cx
x    i = 1, …, n               (5) 

 
 Each firm has a similar reaction function, and the Nash equilibrium occurs when 

each firm is on its reaction function (i.e. choosing its optimal output given the output 

of other firms).  There will be a symmetric and unique Cournot-Nash equilibrium 

which is obtained by solving the n equations (5) for outputs (which are all equal by 

symmetry), 

 

  
1

1
+
−

==∗

n
c

xx c
i   Cournot-Nash equilibrium output         (6) 

 
which results in equilibrium price: 
 

  c
n

n
n

p c

11
1

+
+

+
=                      (7) 

 
For example, if n = 1 (monopoly) we get the standard monopoly solution.  For n = 2, 

xc = (1 – c) / 3, pc = 1/3 + (2/3)c.  The price cost margin for each firm is: 

 

  
nc
c

p
cp

c

c
c

+
−

=
−

=
1
1

µ                     (8) 

 
 There is a clear inverse relationship between the equilibrium price-cost margin and 

the number of firms.  As the number of firms become infinite )( ∞→n , the price-cost 

margin tends to its competitive level of 0: as the number falls to one, it tends to its 

monopoly level (1 – c)/(1 +c), as predicted in Figure 1. 

 
Figure 1  The price-cost margin and the number of firms in the Cournot-Nash    
     equilibrium 
 
What is the intuition behind this relationship between number of firms and the price-

cost margin?  Very simply, with more firms each firm’s own demand becomes more 

elastic.  With an infinite number of firms the firm’s elasticity becomes infinite and 

hence the firms behave as competitive price-takers.  The representative firm’s 

elasticity ?i can be related to the industry elasticity ?: 

 

  
dp
dx

x
p

=η                     (9a) 
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==

dp
dx

x
p

x
x

dp
dx

x
p i

i

i

i
iη                (9b) 

 
Under the Nash assumption firms treat the other firms’ outputs as given and the 

change in industry output x equals the change in firm i’s output.  Hence dx i/dp = 

dx/dp.  Of course xi/x is the ith firm’s market share which, for our example, is in 

equilibrium 1/n.  Hence (9b) becomes: 

 
  ?i = n. ?                    (10) 
 
 In equilibrium each firm’s elasticity is equal to n times the industry elasticity of 

demand.  As n gets large, so does ?i leading to approximately “price-taking” 

behaviour. 

 

6.3.2 Bertrand competition with homogeneous products 

 

In his famous review, Bertrand criticised Cournot’s model on several counts.  One of 

these was the reasonable one that firms set prices not quantities: the output sold by the 

firm is determined by the demand it faces at the price it sets.  What is the equilibrium 

in the market when firms set prices, the Bertrand-Nash equilibrium? 

 If firms set prices the model is rather more complicated than in the Cournot 

framework since there can be as many prices in the market as there are firms.  In the 

Cournot framework the inverse industry demand curve implies a single “market” 

price.  In the Bertrand framework each firm directly controls the price at which it sells 

its output and, in general, the demand for its output will depend on the price set by 

each firm and the amount that they wish to sell at that price (see Dixon 1987b).  

However, in the case of a homogeneous product where firms have constant returns to 

scale, the demand facing each firm is very simple to calculate.  Taking the case of 

duopoly, if both firms set different prices then all households will wish to buy from 

the lower-priced firm which will want to meet all demand (so long as its price covers 

cost), and the higher-priced firm will sell nothing.  If the two firms set the same price, 

then the households are indifferent between buying from either seller and demand will 

be divided between them (equally, for example).  If firms have constant marginal cost 

there exists a unique Bertrand-Nash equilibrium with tow or more firms where each 
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firm sets its price pi equal to marginal cost – the competitive equilibrium.  This can be 

shown in three steps: 

 

Step 1.  If both firms set different prices then that cannot be an equilibrium.  The 

higher-priced firm will face no demand and hence can increase profits by undercutting 

the lower-priced firm so long as the lower-priced firm charges in excess of c.  If the 

lower-priced firm charged c, it could increase profits from 0 by raising its price 

slightly while undercutting the higher-priced firm.  Hence any Bertrand-Nash 

equilibrium must be a single-price equilibrium (SPE). 

 

Step 2.  The only SPE is where all firms set the competitive price.  If both firms 

set a price above c, then either firm can gain by undercutting the other by a small 

amount.  By undercutting, it can capture the whole market and hence by choosing a 

small enough price reduc tion it can increase its profits. 

 

Step 3.  The competitive price is a Nash equilibrium.  If both firms set the 

competitive price then neither can gain by raising its price.  If one firm raises its price 

while the other continues to set pi = c, the lower-priced firm will face the industry 

demand leaving the firm which has raised its price with no demand. 

 

 The Bertrand-Nash framework yields a very different relationship between 

structure and conduct from the Cournot-Nash equilibrium: with one firm the 

monopoly outcome occurs; with two or more firms the competitive outcome occurs.  

Large numbers are not necessary to obtain the competitive outcome and, in general, 

price-setting firms will set the competitive “price-taking” price. 

 Clearly it makes a difference whether firms choose prices or quantities.  What 

grounds do we have for choosing between them?  First, and perhaps most importantly, 

there is the question of the type of market.  In some markets (for primary products, 

stocks and shares) the people who set prices (brokers) are different to the producers.  

There exists what is essentially an auction market: producers/suppliers release a 

certain quantity into the market and then brokers will sell this for the highest price 

possible (the market clearing price).  The Cournot framework would thus seem 

natural where there are auction markets.  While there are auction markets, there are 

also many industrial markets without “brokers” where the producers directly set the 
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price at which they sell their produce.  Clearly, the “typical” sort of market which 

concerns industrial economists is not an auction market but a market with price-

setting firms.  How can the use of the Cournot framework be justified in markets with 

price-setting firms?  

 It is often argued that the choice of Bertrand or Cournot competition rests on the 

relative flexibility of prices and output.  In the Bertrand framework firms set prices 

and then produce to order.  Thus, once set, prices are fixed while output is perfectly 

flexible.  In the Cournot framework, however, once chosen, outputs are fixed while 

the price is flexible in the sense that it clears the market.  Thus the choice between the 

two frameworks rests on the relative flexibility of price and output.  This is of course 

an empirical question but many would argue that prices are more flexible than 

quantities (e.g. Hart 1985) and hence the Cournot equilibrium is more appropriate. 

 A very influential paper which explores this view is Kreps and Scheinkman (1983).  

They consider the subgame perfect equilibrium in a two-stage model.  In the first 

stage, firms choose capacities; in the second stage firms compete with price as in the 

Bertrand model and can produce up to the capacity installed.  The resultant subgame-

perfect equilibrium of the two-stage model turns out to be equivalent to the standard 

Cournot outcome.  This result, however, is not general and rests crucially on an 

assumption about contingent demand (the demand for a higher-priced firm given that 

the lower-priced firm does not completely satisfy its demand) – see Dixon (1987a).  

An alternative approach is to allow for the flexibility of production to be endogenous 

(Dixon 1985; Vives 1986).  The Bertrand and Cournot equilibria then come out as 

limiting cases corresponding to when production is perfectly flexible ( a horizontal 

marginal cost curve yields the Bertrand outcome) or totally inflexible (a vertical 

marginal cost curve at capacity yields Cournot). 

 Another reason that the Cournot framework is preferred to the Bertrand is purely 

technical: there is a fundamental problem of the non-existence of equilibrium in the 

Bertrand model (see Edgeworth 1925; Dixon 1987a).  In our simple example firms 

have constant average/marginal costs.  If this assumption is generalized – for example 

to allow for rising marginal cost – non-existence of equilibrium is a problem.7 

 A common argument for the Cournot framework is its “plausibility” relative to the 

Bertrand framework.  Many economists believe that “numbers matter”: it makes a 

difference whether there are two firms or two thousand.  Thus the prediction of the 

Bertrand model – a zero price-cost margin with two or more firms – is implausible 
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(see, for example, Hart 1979; Allen and Hellwigg 1986).  The Cournot equilibrium 

captures the “intuition” that competition decreases with fewer firms.  There are two 

points to be raised here: one empirical, one theoretical.  Firstly, on the empirical level 

there exists little or no evidence that there is a smooth monotonic relationship 

between the level of concentration and the price-cost margin.  Secondly, on the 

theoretical level, the stark contrast in the Bertrand and Cournot formulations has been 

exhibited here only in the case of a simple one-shot game.  In a repeated game 

numbers may well matter.  For example, Brock and Scheinkman (1985) consider a 

price-setting super-game and show that there is a relationship between numbers and 

prices that can be sustained in the industry (although the relationship is not a simple 

monotonic one).  A related point is that the Nash equilibrium is a non-cooperative 

equilibrium.  Numbers may well matter when it comes to maintaining and enforcing 

collusion and one of Bertrand’s criticisms of Cournot was that collusion was a likely 

outcome with only two firms. 

 

6.4 Cournot and Bertrand equilibria with differentiated commodities 
 
In this section we will explore and contrast the Bertrand and Cournot approaches 

within a common framework of differentiated products with symmetric linear 

demands.  As we shall see, there are again significant contrasts between markets 

where firms compete with prices and quantities.  Firstly, we will compare the 

equilibrium prices and show that the Cournot equilibrium yields a higher price than 

the Bertrand equilibrium.  Thus, as in the case of homogeneous products, Cournot 

competition is less competitive than Bertrand competition although the contrast is 

less. 

 Secondly, we contrast the “Stackelberg” equilibrium (where one firm moves before 

the other) and the corresponding “first-mover” advantage.  In the Cournot framework 

the leader increases his own output and profits at the expense of the follower and total 

output increases, reflecting a more competitive outcome than the standard Nash 

equilibrium.  In the Bertrand framework the Stackelberg leader will raise his price and 

increase his profits.  The follower will also raise his prices and indeed his profits will 

increase by more than the leaders.  Unlike the Cournot case there is then a “second-

mover advantage” in the Bertrand case.  Overall, with price competition the 

Stackelberg equilibrium leads to higher prices and profits and a contraction in total 
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output.  These differences between the behaviour of markets with price and quantity 

competition have important policy implications which will be discussed at the end of 

this section in the context of the recent literature on strategic trade policy. 

 We continue to assume that firms have constant average/marginal cost, A2.  

However, we will drop A1 and assume that there is a symmetric linear demand 

system; in the case of two firms with differentiated products we have: 

 

A3    For 0 < a < 1 
 
    211 1 ppx α+−=                (11a) 
 
    122 1 ppx α+−=                (11b) 
 
where a > 0 implies the two outputs are substitutes (e.g. margarine and butter): if a 

were negative then they would be complements (e.g. personal computers and 

software).  In the exposition we will assume throughout that the firms produce 

substitutes and for technical reasons that a < 1 (i.e. quite plausibly the firm’s own 

price has a greater absolute effect on its demand than the other firm’s price). 

 The above equations express outputs (or more precisely, demands) as a function of 

prices.8  If we want to explore the Cournot framework with differentiated products we 

need to invert (11) to give the prices that will “clear” the markets for chosen outputs. 

 Inverting (11) we have: 

  
122102

221101

xaxaap
xaxaap

−−=
−−=

                  (12) 

 

where  
20 1

1
α
α

−
+

=a ;  
21 1

1
α−

a ;  
22 1 α

α
−

=a . 

Since a > 0 both prices are decreasing in both outputs.  Thus an increase in x1 by one 

unit will decrease p1 by a1, and p2 by a2 (of course a1 > a2 for a < 1). 

 
6.4.1 Cournot-Nash equilibrium 
 
There are two firms which choose outputs, the resultant prices given by the inverse 

demand system (12).  Firm 1’s “payoff” function is: 

 
  ( )[ ]cxaxaax −−−= 2211011π  
 
To obtain firm 1’s reaction function x1 is chosen optimally given x2: 
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Solving for x1 this yields: 
 

  ( )
1

220
211 2a

xaca
xrx

−−
==                 (13) 

 
The slope of the reaction function is given by: 
 

  0
22 1

2

2

1
1

<−=
−

=
α

a
a

dx
dx

r  

 
With substitutes each firm’s reaction function is downward sloping in output space as 

in Figure 2. 

 The firms are identical and there is a unique symmetric equilibrium at N with  

x1 = x2 = xc: 
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with resultant price: 
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Figure 2  Cournot reaction functions 

 
6.4.2 Bertrand-Nash equilibrium 
 
Turning now to the Bertrand case firms choose prices so that we use the direct 

demand system (11).  Firm 1’s profits are: 
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Hence firm 1’s reaction function in price space is: 
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The slope is: 
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Thus the two firms’ reaction functions are upward sloping in price space as depicted 

in Figure 3. 

 
Figure 3  Bertrand-Nash equilibrium 

 
 
 There is a unique symmetric equilibrium price p1 = p2 = pb with corresponding 

output, price and price-cost margins: 
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 How do the Cournot and Bertrand equilibria compare?  Direct comparison of (18) 

with (15) shows that pb < pc: i.e. the Bertrand equilibrium prices are lower than 

Cournot prices.  We formulate this in the following observation: 

 
Observation.  If firms’ demands are interdependent a ? 0 then: 
 
  bc pp > ; ;bc xx <  bc µµ >  
    
If a = 0 then each firm is, in effect, a monopolist since there are no cross-price effects 

and the two outcomes are, of course, the same.  It should be noted that the above 

observation remains true when the goods are complements (-1 < a < 0). 

 With differentiated products, then, Bertrand competition will be more competitive 

than Cournot competition although the difference is less stark than in the case of 

homogeneous products.  With product differentiation firms have some monopoly 

power even with price competition and do not have the same incentives for 

undercutting their competition as in the homogeneous goods case. 
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 What is the intuition behind the above observation that price competition is more 

competitive than quantity competition?  Clearly, for a monopoly, it makes no 

difference whether price or quantity is chosen; it simply chooses the profit-

maximizing price-output point on its demand curve.  There is a sense in which this is 

also true for the oligopolist: given what the other firm is doing it faces a demand curve 

and chooses a point on that demand curve.  However, the demand curve facing firm 1 

will be different if firm 2 keeps x2 constant (and hence allows p2 to vary) from when 

firm 2 keeps p2 constant (and hence allows x2 to vary).  From (11) if firm 2 has price 

as its strategy and holds p2 constant, firm 1’s demand is: 

 
  ( ) 121 1 ppx −+= α                      (21) 
 
with slope 
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2
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1 −=pdp
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and elasticity 
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 If, on the contrary, firm 2 has output as its strategy it allows its price p2 to vary as 

p1 varies (to keep x1 constant): 

 
  122 1 pxp α+−=                        (23) 
 
Substituting (23) into (11a) we obtain firm 1’s demand when x2 is held constant: 
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with slope and elasticity: 
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Clearly, comparing elasticities (22) and (25): 
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22 11 << xp ηη  
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Thus the demand facing firm 1 is more elastic when firm 2 holds p2 constant (and 

allows x2 to vary) than when x2 is held constant (and p2 allowed to vary).  For 

example, suppose that firm 1 considers moving up its demand curve to sell one less 

unit of x1 with substitutes (a > 0).  If firm 2 holds x2 constant then as firm 1 reduces 

its output and raises its price the price for x2 will rise (via (11b)).  Clearly the demand 

for firm 1 will be more elastic in the case where firm 2 does not raise its price and 

expands output. 

 We have derived the above observation under very special assumptions A1, A3.  

How far can we generalise this comparison of Cournot and Bertrand prices?  This has 

been the subject of much recent research – see for example Cheng (1984), Hathaway 

and Rickard (1979), Okuguchi (1987), Singh and Vives (1984), Vives (1985a,b).  

Vives (1985a) considers a more general differentiated demand system which need not 

be linear or symmetric (ibid. 168) and derives fairly general conditions for which the 

Bertrand price is less than the Cournot price.  Of course there need not be unique 

Cournot or Bertrand equilibria: with multiple equilibria the comparison becomes 

conceptually more complex.  Vives (1985b) has established a result that for very 

general conditions there exists a Bertrand equilibrium which involves a lower price 

than any Cournot equilibrium. 

 Of course there are other contrasts to be drawn between Cournot and Bertrand-

Nash equilibria.  For example, there is the question of welfare analysis employing 

standard consumer surplus.  A simple example employing the linear demand system 

(11), (12) is provided by Singh and Vives (1984: 76) which shows  that the sum of 

consumer and producer surplus is larger in Bertrand than in Cournot-Nash 

equilibrium both when goods are substitutes and complements. 

 
6.4.3 Stackelberg leadership and the advantages of moving first 
 
The difference between Cournot and Bertrand competition go deeper than the simple 

comparisons of the previous section.  To illustrate this we will examine the 

advantages of moving first in the two frameworks.  The standard Nash equilibrium 

assumes that firms move simultaneously.  However, Heinrich von Stackelberg (1934) 

suggested an alternative in which one firm (the leader) moves first, the other (the 

follower) moves second.  Thus when the follower chooses its strategy it treats the 

leader’s choice as given.  However, the leader will be able to infer the follower’s 

choice and take this into account in its decision.  The explicit algebraic analysis of the 
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Stackelberg equilibrium is rather complicated and we will rather employ the familiar 

iso-profit loci.9  In the following analysis it is important to note that under A1, A3 the 

model is perfectly symmetric; thus whether in price or quantity space the firms’ 

reactions functions are “symmetric” in the sense that firm 1’s reaction is a reflection 

of firm 2’s in the 45o line (see Figures 2,3).  Similarly, firm 1’s iso-profit loci are 

simply reflections of firm 2’s in the 45o line and vice versa. 

 Firstly we analyse the Stackelberg equilibrium in the Cournot case.  The follower 

(firm 2) will simply choose its output to maximize its profits given x1 so that 

x2=r2(x1).  The leader, however, will choose x1 to maximize its profits given that x2 

depends on x1 via r2.  Thus by moving first the leader can pick the point on firm 2’s 

reaction function that yields it the highest profits: this is represented in Figure 4 by the 

tangency of iso-profit loci pL to r2 at point A. 

 

Figure 4   First-mover advantage in Cournot model 
 

 If firm 2 were the leader and firm 1 the follower then, by symmetry, firm 2’s 

Stackelberg point would be at point B – the reflection of A in the 45o line (at this 

point firm 2’s iso-profit locus is tangential to firm 1’s reaction function).  Comparing 

points A, B and the Nash equilibrium at point N we can see that if firm 1 is the leader 

it earns pL which is greater than in the Nash equilibrium pN
.  If firm 1 is a follower it 

will end up at point B and earn only pF which is less than pN.  Hence, in the Cournot 

framework we have: 

 
    pL  > pN  > pF  (Cournot) 
   
    profits  Nash   profits 
    of   profits  of 
    leader     follower 
 

There is thus a first-move advantage in two senses: the leader earns more than in the 

simultaneous-move case (pL > pN); the leader earns more than the follower (pL > pF). 

The leader increases his output and profits at the expense of the follower (in fact, the 

decline in the follower’s profits from pN to pF is larger than the increase in the 

leader’s from pN to pL: industry profits fall). 

 In the Bertrand case the story is rather different: there is a “second-mover” 

advantage.  The reaction functions and iso-profit loci of firm 1 depicted in price space 

are shown in Figure 5 and again are symmetric.  The iso-profit loci for firm 1 are 
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higher the further away they are positioned from the x-axis (firm 1 will earn higher 

profits the higher p2 is).  N is the Nash equilibrium, A occurs if 1 is the leader, B if 2 

is the leader. 

 
 

Figure 5   Second-mover advantage in Bertrand model 
 

 If firm 1 is the leader it will choose to raise its price moving along firm 2’s reaction 

function S2 from N to A and profits will increase from pN  to pL.  However, if firm 1 is 

the follower it will end up at B with profits pF.  Note that the follower raises his price 

by less than the leader and that pF > pL.  thus the leader will set a higher price than the 

follower, produce a lower output and earn less profits: 

 
  pF > pL > pN  (Bertrand) 
 
There is an advantage to moving “second”.  The second-mover advantage goes 

beyond Bertrand equilibria and extends to any game with upward-sloping reaction 

functions (Gal-Or) 1986).  There is still a first-mover advantage in the sense that the 

leader earns more than in the simultaneous move case (pL > pN).  In contrast to the 

Cournot case, in the Bertrand case Stackelberg leadership leads to higher prices, 

profits and lower outputs. 

 
6.4.4 Prices vs. quantities 
 
Price and quantity competition have very different implications for the nature of 

product market competition between firms.  Most importantly, from the firms’ point 

of view, price competition leads to lower profits than does quantity competition in 

Nash equilibrium.  As was discussed earlier, whether firms should be viewed as 

competing with price or quantity can be seen as depending on structural or 

institutional characteristics of the market – the flexibility of production, whether the 

market is an auction market etc. 

 An alternative approach is to treat the firm’s decision to choose price or quantity as 

itself a strategic decision (Klemperer and Meyer 1986; Singh and Vives 1984).  While 

it is perhaps not quite clear how firms might achieve this, it is at least a useful 

“experiment” and will reveal the incentives which firms have to achieve one or the 

other type of competition. 
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 Without uncertainty, this “experiment” is not fruitful: firms are indifferent between 

choosing price or quantity.  The reason is that from the individual firm’s perspective it 

simply faces a demand curve and, like a monopolist, chooses a point on that demand 

curve.  It can achieve any point on the demand curve by choosing either price or 

quantity.  The firm’s own price/quantity decision does not affect this demand curve 

which is rather determined by the other firm’s choice.  Firm 1’s choice has a pure 

externality effect on the demand faced by firm 2: if 1 chooses price, 2’s demand is 

more elastic than if firm 1 had chosen quantity.  However, in the Nash framework, 

each firm will ignore this externality: given the other firm’s choice, each firm will 

face a particular demand curve and will be indifferent between setting price or 

quantity itself.  In the case of duopoly there will be four Nash equilibria in this 

strategic game: one where both set quantities (Cournot); one where both set prices 

(Bertrand); and two asymmetric equilibria where one sets price and the other quantity.  

With certainty, then, allowing firms to choose price or quantity tells us nothing about 

which may be more appropriate. 

 The presence of uncertainty (adding a stochastic term to A3, for example) can 

mean that firms have a strict preference between price and quantity setting.  The 

results depend very much on the exact assumptions made (is demand uncertainty 

additive or multiplicative; is demand linear in prices?).  For the simple linear demand 

system A3 with an additive stochastic term firms will prefer quantity setting if 

marginal costs are increasing; they will be indifferent if marginal costs are constant 

(as in A1); they prefer price setting if marginal costs are decreasing (Klemperer and 

Meyer 1986; proposition 1).  While this and related results are at present rather 

specific they do suggest that the presence and nature of uncertainty provide some 

insights into how firms view the alternatives of price and quantity setting. 

 

6.5 Precommitment: strategic investment and delegation 

 

In the previous section we explored the nature of the first-mover advantage in the 

Cournot and Bertrand framework.  Clearly, if we start from the Nash equilibrium 

there is an incentive for the firm to precommit its output/price to obtain this first-

mover advantage.  By “precommitment” it is meant that the firm takes some action 

prior to competing in the product market which commits it to a certain course of 

action.  In the standard Cournot model it is not credible for one firm to produce the 
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Stackelberg output in the simultaneous move game.  For example, in terms of Figure 

6, firm 1’s Stackelberg point A is not on its reaction function – so that given firm 2’s 

output x2A firm 1 would like to produce x1.  The only credible equilibrium is the Nash 

equilibrium at N.  In order to move towards its Stackelberg point the firm must be 

able to precommit its output in some way.  In the previous section we simply assumed 

that the leader was able to move first.  In some situations it is natural to assume a 

particular sequence of moves (e.g. entrant/incumbent, dominant firm).  However, in 

the case of active incumbents which are competing on even terms, simultaneous 

moves seem more natural. 

 
 

Figure 6  Non-credibility of Stackelberg point 
 

 Given that there is an incentive for the firm to precommit how can this be 

achieved?  This section will look at two methods of precommitment which have 

received much recent attention – precommitment through investment and 

precommitment through delegation.  The basic idea is simple: the firm can take 

actions prior to competing in the market which will alter the Nash equilibrium in the 

market.  Firms can take actions such as investment decisions10 and choice of 

managers that are irreversible (in the sense of being “fixed” over the market period) 

and which alter the firm’s reaction function thus shifting the Nash equilibrium in the 

market.  We will first consider how investment by firms can be used strategically to 

alter the market outcome. 

 For a wide range of industrial processes economists since Marshall have taken the 

view that it is appropriate to treat the capital stock decision as being taken on a 

different time scale (the “long run”) to price/output decisions (the “short-run”).  When 

firms compete in the product market it follows that they treat their capital stock as 

fixed.  The capital stock chosen by the firm will influence its costs when it competes 

in the market.  The fact that capital is committed “before” output/price decisions 

means that it can use investment strategically to influence the market outcome.  In 

essence, through its choice of capital stock, the firm will determine the short-run costs 

which it will have when it chooses output/price; the firm’s marginal costs will 

determine its reaction function and hence the Nash equilibrium in the product market. 

Schematically: 
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 Investment   ?   short-run   ?   reaction ?   market 
         marginal cost     function      equilibrium 
  
 For example, in the Cournot case the firm can increase its investment, reduce its 

marginal cost and hence shift its reaction function out so that the product market 

equilibrium moves towards the Stackelberg point.  Of course, this precommitment is 

not costless: capital costs money and, as we shall see, such use of capital leads to 

productive inefficiency.  Again there is an important dichotomy between the Cournot 

and Bertrand approaches: if the product market is Cournot then the firm will want to 

overinvest; if the product market is Bertrand then the firms will want to underinvest.  

We will briefly illustrate both situations. 

 The structure of strategic investment models is very simple: there are two stages to 

capture the distinction between the short and the long run.  In the first “strategic” 

stage, the firms choose their capital stock; in the second “market” stage firms choose 

output/price.  The choice of capital stock in the first stage will determine the cost 

function which the firm has.  In the previous two sections we assumed constant 

average/marginal cost at c (A2).  This can be conceived of as the long-run cost 

function.  In order to keep the exposition consistent we will assume that firms have a 

production function of the form: 
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 Thus an increase in investment lowers the marginal cost of producing output.  The 

production function A4 displays constant returns to scale and hence the long-run cost 

function has constant average/marginal cost in terms of A2,11 minimum average cost  

c = 2vr. 

 We will first outline the strategic investment model with Cournot competition in 

the product market, a simple version of Brander and Spencer’s (1983) article.  If 

investment is used non-strategically, then the firm simply operates on its long run cost 
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function given by A2: capital and labour are chosen to minimise production costs.   In 

the strategic investment framework, however, the firm’s costs will be given by its 

short-run cost function (26).  Turning to the market stage, the firm’s profits are: 
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Figure 7   Investment shifts from 1’s reaction function out 
 

 The reaction function which the firm has in the market stage, conditional on ki, is 

derived by setting 0/ =∂∂ ii xπ : 
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By increasing its investment firm i will reduce its marginal costs and from (29) it will 

shift its reaction function out as in Figure 7.  Given the level of investment by the two 

firms (k1 k2) are obtained by solving (29) for x1 and x2 (we leave this as an exercise for 

the reader).  In general form: 

 

   







=

−+
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This notation signifies that firm i’s equilibrium output in the market stage depends 

positively on its own investment and negatively on investment by the other firm.  

Suppose we start off at point A in Figure 9: an increase in k1 to '
1k  shift out r1 so that 

the market equilibrium goes from A to B, xi rising and x2  falling.  Conversely, an 

increase in k2 shifts the equilibrium from A to C.  Thus by altering their investment, 

the firms can alter their reaction functions and hence the market stage equilibrium. 

 
Figure 8   Market stage equilibrium given investment k1, k2 

 
 How is the optimal level of investment in the first strategic stage determined?  

Firms choose investment levels ki given that the second-stage outputs will be as in 

(30).  We can see their profits as a function of capital stocks.  For firm 1 we have 

profits: 
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 ( ) ( ) ( ) ( )[ ] ( )( )1211212221110211211 ,,,,,, kkkxckkxakkxaakkxkk −−−=π  
                        (31) 
 
The RHS term in square brackets is the price, which is multiplied by output to obtain 

revenue from which are subtracted costs. 

 The firm will choose k1 to maximize its profits (31) hence:  
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Since firm 1 chooses x1 to maximize profits given x2 and k1 in the second stage, the 

bracket on the right-hand side of (32) is zero (it is simply its reaction function (29)). 

Hence (32) becomes: 

           (33) 
 
 What does (33) tell us?  1/ kc ∂∂  gives the effect of investment on the total costs of 

producing x1.  If 1/ kc ∂∂  = 0, as in the standard non-strategic case, then k1 minimizes 

the cost of producing x1.  If 1/ kc ∂∂  > 0, as in (33), then there is “overcapitalization”: 

more investment than would minimize costs ( a reduction in k1 would reduce average 

costs).  If 1/ kc ∂∂  < 0, then there is “undercapitalization”: less investment than would 

minimize costs. 

Figure 9  Market stage equilibrium and changes in investment 
 
 
With a Cournot market stage, then, there is overcapitalization of production in the 

market stage.  The intuitive reason is quite simple.  Given the other firm’s reaction 

function, each firm can shift its own reaction function out towards its Stackelberg 

point.  Of course there is a cost to: more investment leads to higher capital costs and 

inefficient production.  The firms will shift out their reaction functions beyond their 

“innocent” level and the final product market equilibrium will be at a point such as S 

in Figure 10.  At the equilibrium level of investment the additional cost of investment 

equals the additional gains from moving out the reaction function further.  In the 

strategic  investment equilibrium S then, both firms produce a larger output than in the 

non-strategic equilibrium N. 
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 In the Bertrand case an exactly analogous argument applies for strategic 

investment.  However, there is the opposite result of undercapitalization.  The 

Stackelberg equilibrium results in higher prices and lower outputs than in the Bertrand 

case.  Thus firms will restrict investment relative to the innocent Bertrand equilibrium 

in order to shift their reaction function out in price space, as in Figure 11.  Starting 

from the “innocent” Bertrand equilibrium at N, if firm 1 restricts its investment its 

marginal costs rise and its reaction function shifts outwards to '
1s  (an outward shift 

because with higher marginal costs it will wish to set a higher price and produce a 

smaller quantity given the price chosen by the other firm).  If both firms underinvest 

strategically the resultant equilibrium will be at S with higher prices and lower output. 

 
Figure 10   Strategic investment equilibrium – the Cournot case 

 
 

Figure 11   Underinvestment raises prices 
 

 We will briefly sketch the algebra underlying this result.  Under A1 and A4 the 

firm’s profits are: 
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Setting 0/ =∂∂ ii pπ  firm i’s reaction function pi = si(pj) is: 
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Solving for pi to pj given ki and kj in general terms we have: 
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The firms choose ki to maximize (34) given that in the market subgame firms’ prices 

are given by (36) (i.e. a Bertrand-Nash equilibrium occurs). 
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Note that ,0/ =∂∂ ii pπ since firms are in their market stage reaction function (35) 

and, further, that  .// iiii kck ∂−∂=∂∂π  Hence (37) can be expressed as: 
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That is, undercapitalization of production results from the strategic use of investment 

with Bertrand product market competition. 

 Clearly, the result of strategic investment models depends on the nature of product 

market competition.  Other papers have made different assumptions than the simple 

Cournot-Nash and Bertrand-Nash equilibria.  Dixon (1985) considers the case of a 

competitive product market; Eaton and Grossman (1984) and Yarrow (1985) a 

conjectural Cournot equilibrium; Dixon (1986b) a consistent conjectural variation 

equilibrium in the product market. 

Since production will generally be inefficient in a strategic investment equilibrium, 

firms have an incentive to try and precommit their labour input at the same time as 

their capital.  By so doing, firms will be able to produce any output efficiently, while 

being free to precommit themselves to a wide range of outputs.  In Dixon (1986a), 

precommitment is treated as a strategic choice by the firm: the firm can precommit 

either, neither, or both capital and labour in the strategic stage.  Because of the 

strategic inefficiency in production that occurs when only capital is precommited, 

under almost any assumption about the nature of product market competition, firms 

would prefer to precommit both factors of produc tion (Dixon 1986a; Theorem and ? 

p. 67).  If firms precommit both factors of production in the strategic stage then, in 

effect, they have chosen their output for the market stage and the resultant equilibrium 

is equivalent to the standard Cournot equilibrium.  How might firms be able to 

precommit their output in this manner?  One important method that may be available 

is choice of technology.  More specifically, the firm may have a choice between a 
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putty-putty technology that allows for smooth substitution of capital for labour in the 

market stage or an otherwise equivalent putty-clay technology that is Leontief in the 

market stage.  If the firm chooses a putty-clay technology then its choice of 

investment and technique in the strategic stage effectively tie s down its output and 

employment in the market stage.  If possible, then, firms would prefer to have totally 

inflexible production in the market stage.  This strong result ignores uncertainty of 

course.  If demand or factor prices are uncertain there will be a countervailing 

incentive to retain flexibility. 

In strategic investment models it is firms themselves which precommit.  

Governments, however, can undertake precommitments which firms themselves 

cannot make.  In the context of trade policy there has been much recent research on 

how governments can improve the position of their own firms competing in 

international markets (see Venables 1985 for excellent surveys).  If domestic firms are 

competing in foreign markets the net benefit to the home country in terms of 

consumer surplus is the repatriated profits – total revenue less the production costs 

(with competitive factors markets production costs represent a real social cost to the 

exporting country).  Government trade policy may therefore be motivated by what is 

called “rent extraction”: that is, helping their own firms to make larger profits which 

are then repatriated.  Trade policy, usually in the form of an export subsidy or tax, is a 

form of precommitment by the government which enables domestic firms to improve 

their position in foreign markets.  Brander and Spencer (1984) presented the first 

model based on the rent-extraction principle and argued for the use of export 

subsidies in the context of a Cournot-Nash product market.  Subsidies have the effect 

of reducing the marginal costs faced by exporters and can thus be used to shift out 

their reaction functions to the Stackelberg point (the cost subsidies “cost” nothing 

from the point of view of the exporting country since they merely redistribute money 

from the taxpayers to shareholders).  As Eaton and Grossman (1983) argued, the exact 

form of the trade policy will be sensitive to the nature of product market competition.  

With a Bertrand product market, of course, rent extraction arguments lead to the 

imposition of an export tax since this will shift the Bertrand competitor’s reaction 

function outwards in price space towards its Stackelberg point. 

The incentive to precommit in oligopolistic markets also sheds light on one of the 

perennial issues of industrial economics – what are the objectives of firms?  The 

divorce of ownership from control can be viewed as an act of delegation by 
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shareholders.  This act of delegation can be employed as a form of precommitment by 

shareholders.  What sort of Managers do shareholders want to manage their firms?  

There is an obvious answer to this question which underlies the managerialist view of 

Marris (1964): shareholders want managers who maximize profits (share valuation) 

and work hard.  This may be true in the context of monopoly: in an imperfectly 

competitive framework matters are rather different.  Several recent papers (Fershtman 

1985; Lyons 1986; Vickers 1985a) have shown how higher profits for shareholders 

can be obtained when they have non-profit maximizing shareholders.  The reaction 

functions of firms in the standard Cournot and Bertrand models are based on the 

assumption of profit maximization.  By choosing managers with different objectives 

(e.g. a preference for sales, or an aversion to work) the firms’ reaction functions will 

be shifted.  We will illustrate this with a very simple example adapted from Lyons 

(1986).  Managers maximize utility which depends on profits (remuneration) and 

sales R (power, prestige and so on).  The utility is a convex combination of the two: 

 
  Ryyu )1( −+= π   10 ≤≤ y  
      ycR −=  
 
since π = R – c.  The coefficient y represents the weight put on profits: y = 1 is 

profit maximization, y = 0 yields sales maximization. 

 

Figure 12 Equilibrium outcome and managerial preferences 

 

Using the common framework A1, A2, assuming that managers choose outputs to 

maximize utility, we can derive the firm’s reaction functions: 
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By choosing managers with a preference for sales (i.e. y smaller than unity) 

shareholders can push out their firm’s reaction function.  In Figure 12 we depict the 

two extreme reaction functions: the one nearest the origin corresponding to profit 

maximization y = 1, the other to sales maximization y = 0.  Given firm 2’s reaction 

function, firm 1 can move to any point between N and T by choosing the appropriate 

value of y.  If, as depicted, the Stackelberg point A lies between N and T, then firms 

will be able to attain their Stackelberg point – note that since A will lie to the left of 

N, the choice of y will surely be less than unity, reflecting non-maximization of 

profits due to some sales preference.  In such a market, if one firm is a profit 

maximizer with y = 1 and the other has management with y < 1 the non-profit 

maximizing firm will earn more than the profit-maximizing firm!  Of course, in a 

Bertrand market the shareholders would wish to choose managers who would restrict 

output and raise prices – perhaps lazy managers with an aversion to work (see Dixon 

and Manning 1986, for an example).  While we have talked about different “types” of 

managers, the precommitment made by shareho lders can be seen as taking the form of 

different types of remuneration packages which elicit the desired behaviour from 

managers. 

 In an imperfectly competitive market then, it can pay shareholders to have non-

profit maximizing managers.  There need not be the conflict of interest between 

owners and managers that is central to managerialist theories of the firm.  Also, 

“natural selection” processes need not favour profit maximizers in oligopolistic 

markets since, for example, sales-orientated managers can earn larger profits than 

their more profit-orientated competitors.  This is a comforting result given the 

apparent prevalence of motives other than profits in managerial decisions. 

 The presence of a first-mover advantage means that firms competing in an 

oligopolistic environment have an incentive to precommit themselves in some way.  

We have explored two methods of precommitment: through investment and through 

delegation.  Strategic investment leads to productive inefficiency and, from the point 

of view of the firm, it may be cheaper to make its precommitment through its choice 

of managers rather than its choice of capital stock. 

 

 

6.6 Competition over time  
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In general, Nash equilibria are “inefficient” in the sense that in equilibrium profits of 

all the firms can be increased.  The fundamental reason is that firms’ profits are 

interdependent (via the payoff function): each firm’s profits depend partly on what the 

other firms are doing.  There is thus an “externality” involved when each firm chooses 

its strategy.  For example, in the Cournot framework if one firm raises its output, it 

reduces the prices obtained by the other firms, thus reducing their profits (a negative 

externality).  In the Bertrand case, a rise in price by one firm is a positive externality 

since it raises the demand for other firms.  Under the Nash assumption, each firm 

chooses its own strategy taking into account only the impact on its own profits, 

ignoring the externality. 

 The inefficiency of Nash equilibria can easily be demonstrated using the abstract 

notation of the section “Non-cooperative equilibrium”.  For simplicity we will take 

the case of duopoly.  To obtain an efficient (Pareto optimal) outcome between the two 

firms, simply maximize a weighted sum of firms’ profits: 
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Figure 13 The profit frontier 
 
 

The leading diagonal terms represent the effect of ai on iπ , the firm’s strategy on its 

own profits.  The off-diagonal terms reflect the “externality”, the effect of a firm’s 

strategy on the other firm’s profits.  Depending on the weight λ , a whole range of 

Pareto-optimal outcomes is possible (corresponding to the contract curve of the 

Edgeworth box).  These outcomes can be represented as the profit frontier in payoff 

space, as in Figure 13.  On the frontier, each firm’s profits are maximized given the 
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other firm’s profits.  As λ  moves from 0 to 1, more weight is put on firm 1’s profits 

and we move down the profit frontier.12  

The Nash equilibrium profits are not Pareto optimal and lay inside the profit 

frontier at point N, for example.  To see why note that for a Nash equilibrium to 

occur, both firms choose ai to maximize their own profits (they are both on their 

reaction functions).  Thus the first-order equations defining the Nash equilibrium are: 
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If we compare (41) with (40) we can immediately see that if there is some 

interdependence captured by a non-zero cross-effect ( )0/ ≠∂∂ ji aπ  then (41) will not 

be efficient.  If there is a negative cross-effect, then at the Nash equilibrium N: 
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The marginal effect of ai on the weighted sum of industry profits is negative: there is 

too much output chosen.  Conversely, in the Bertrand case at the Nash equilibrium, 

the marginal effect of a price rise on the weighted sum of industry profits is positive. 

This inefficiency of Nash equilibria means that there is an incentive for firms to 

collude – to choose their strategies (a1, a2) jointly and move from N towards the profit 

frontier.  Of course, if the two firms could merge or write legally binding contracts, it 

would be possible for them to do this directly.  However, anti-trust law prevents them 

from doing so: firms have to behave non-cooperatively.  However, since the efficient 

outcomes are not Nash equilibria, each firm will have an incentive to deviate from the 

efficient outcome: it will be able to increase its profits, for example from (40), at an 

efficient outcome where partial ji a∂∂ /π  is positive (negative) then ii a∂∂ /π will be 

negative (positive) so that a slight reduction (increase) in ai will increase i’ profits. 

Given that firms have an incentive to cooperate, how can they enforce cooperative 

behaviour if there is also an incentive for firms to deviate from it?  One response is to 

argue that firms compete over time: firms can enforce cooperative behaviour by 

punishing deviation from a collusive outcome.  Since firms are involved in a repeated 

game, if one firm deviates at time t, then it can be “punished” at subsequent periods.  
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In a repeated game, might not such “threats” enable firms to enforce a collusive 

outcome over time?  This question has provided the impetus for much research in 

recent years. 

In a finitely repeated game with perfect information it turns out that the unique 

subgame-perfect equilibrium will be to have the Nash equilibrium in each period 

(assuming that there is a unique Nash equilibrium in the constituent game).  That is, if 

we restrict firms to credible punishment threats, then those credible threats will not 

enable the firms to do better than their Nash equilibrium profits in each period.  the 

argument is a standard backwards induction argument.  Consider the subgame 

consisting of the last period.  There is a unique Nash equilibrium for this subgame 

which is that the firms play their Nash strategies.  Any other strategy in the last period 

would not be “credible”, would not involve all firms adopting their best response to 

each other.  Consider the subgame consisting of the last two periods.  Firms know that 

whatever they do in the penultimate period, the standard Nash equilibrium will occur 

next period.  Therefore, they will want to choose their action to maximize their profits 

in the penultimate period given what the other firms do.  If all firms do this the 

standard Nash equilibrium will occur in the penultimate period.  By similar arguments 

as we go backwards, for any period t, given that in subsequent periods the Nash 

equilibrium will occur, the Nash equilibrium will occur in period t as well.  Hence 

finite repetition of the game yields the standard Nash outcome in each stage of the 

history of the market.  This backwards induction argument goes back to Luce and 

Raiffa’s analysis of the repeated prisoner’s dilemma (1957). 

In finitely repeated games, then, there is no scope for threats/punishments to move 

firms’ profits above their Nash level.  The argument relied upon a known terminal 

period, “the end of the world”.  An alternative approach is to analyse infinitely 

repeated games, reflecting the view that market competition is interminable.  This 

raises a different problem: there are generally many subgame perfect equilibria in 

infinitely repeated games.  Clearly, the above backwards induction argument cannot 

be employed in infinitely repeated games because there is no last period to start from!  

It has proven mathematically quite complex to characterize the set of subgame perfect 

equilibria in infinitely repeated games.  There are two types of results (commonly 

called “Folk theorems”) corresponding to two different views of how to evaluate the 

firm’s payoffs over an infinitely repeated game.  One approach is to view the firm 

maximizing its discounted profits for the rest of the game at each period (Lockwood 
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1984; Abreu 1985; Radner 1986).  The other is to view that the firm does not discount 

but maximizes its average per-period payoff. 

Let us first look at the “Folk theorem” for infinitely repeated games without 

discounting which is based on work by Rubenstein (1979).  The key reference point is 

the “security level” of firms: this represents the worst punishment  that can be 

inflicted on them in the one-shot constituent game.  This is the “minimax” payoff of 

the firm, the worst payoff that can be imposed on the firm given that it responds 

optimally to the other firm(s).  For example, take the simple Cournot model: the 

lowest level to which firm 1 can drive firm 2 is zero – this corresponds to where firm 

2’s reaction function cuts the x-axis and firm 2’s output and profits are driven to zero.  

In the framework we have employed each firms’ security level corresponding to the 

worst possible punishment it can receive is equal to zero.  An individually rational 

payoff in the constituent game is defined as a payoff which yields both firms their 

security level.  The basic result is that any individually rational payoff in the 

constituent game can be “sustained” as a perfect equilibrium in an infinitely repeated 

game without discounting.  By “sustained” it is meant that there corresponds 

equilibrium strategies that yield those payoffs for each firm.  In our example this 

means that any combination of non-negative profits is possible!  This will include the 

outcomes on the profit frontier of course but also outcomes that are far worse than the 

standard Cournot-Nash equilibrium!  In terms of Figure 13, the whole of the area 

between the axes and the profit frontier (inclusive) represents possible payoffs of 

some subgame perfect equilibrium! 

With discounting, the range of possible equilibria depends on the discount rate d.  

At period t the future discounted profits for the rest of the game are: 
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where 0=d<1 (if the interest rate is r then d = 1/(1+ r)).  The larger is d, the more 

weight is put on the future: as d tends to one, we reach the no-discounting case (since 

equal weight is put on profits in each period); with d equal to zero, the future is very 

heavily discounted and the firm concentrates only on the current period.  The analysis 

of infinitely repeated games with discounting is rather more complex than the no-

discounting case, not least because it is more difficult to define the firm’s security 

level which itself varies with d (see Fudenberg and Maskin 1986).  The basic Folk 
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theorem is that: (a) as d?  0, then the set of perfect equilibrium payoffs shrink to the 

one-shot Nash payoffs; (b) as d?  1, then any individually rational payoff is an 

equilibrium payoff.  Again, the analysis is rather complicated here and the reader is 

referred to Lockwood (1987) for an excellent analysis of the issues.  The basic 

message for games with discounting is that the set of perfect equilibria depends on the 

discount rate and may be very large. 

From the point of view of industrial economics the game-theoretic results for 

repeated games are far from satisfactory.  With finite repetition the equilibrium is the 

same as in the one-shot case: with infinite repetition there are far too many equilibria 

– almost anything goes!  There seems to be little middle ground. 

However, recent advances involving games of imperfect information may provide 

some answer to this dilemma (Kreps et al. 1982).  The basic idea is very simple.  

Suppose that the firms are uncertain about each other’s objectives.  In a repeated 

game, firms can learn about each other’s “character” from observing their actions 

through time.  In this circumstance, firms are able to build up reputations.  Let us take 

a very simple example: there are two firms A and B with two strategies, cooperate (c) 

or defect (d).  The resultant profits of the two firms are of the familiar prisoner’s 

dilemma structure: 

 

 B 
 c d 

c (1,1) (-1,2) 
 
A 

d (2,-1) (0,0) 
 

 
Defection is the “dominant” strategy: whatever the other firm does, defection 

yields the highest profits hence the unique Nash equilibrium is for both firms to 

defect.  This outcome is Pareto-dominated by the outcome where both firms 

cooperate.  If there is perfect information and the game is repeated over time, then the 

unique subgame-perfect equilibrium is for both firms to defect throughout (by the 

standard backwards induction argument). 
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Now following Kreps et al. (1982) introduce some uncertainty.  We will take the 

case where firms are uncertain about each other’s motivation.  In general, firms are of 

two types: a proportion a are “Rats” and play rationally; proportion (1 – d) are 

“Triggers” and play “trigger” strategies.  A trigger strategy means that the firm will 

play cooperatively until the other firm defects, after which it will punish the defector 

by playing non-cooperatively for the rest of the game. 

In a multi-period game like this where there is imperfect information, each firm 

may be able to infer the other firm’s type from its past actions.  For example, if one 

firm defects when they have previously both been cooperative, then the other firm can 

infer that the other firm is a Rat (since a Trigger only defects in response to an earlier 

defection).  By playing cooperatively, then, a Rat can leave the other firm guessing as 

to his true type; if a Rat defects he knows he will lose his reputation and “reveal” his 

true nature. 

To illustrate this as simply as possible, we will consider what happens when the 

above game is repeated for three periods and firms have discount rates d.  For certain 

values of a and d it will be an equilibrium for both firms to cooperate for the first two 

periods and defect in the last period.  Consider the following strategy from a Rat’s 

point of view (a Trigger will of course follow a trigger strategy). 

 

Period 1: Cooperate 

Period 2: Cooperate if the other firm cooperated in period 1, defect otherwise. 

Period 3: Defect 

 

We will now show that this can be a perfect-equilibrium strategy for a Rat.  Recall 

that the Rat does not know whether his opponent is a Trigger or a Rat following the 

same strategy. 

In period 3 it is clearly subgame perfect to defect – whatever the type of the 

opponent, be he Rat or Trigger, defection is the dominant strategy and yields the 

highest payoff.  In period 2 the decision is a little more complex.  If the other firm (B, 

say) defected in period 1 then, of course, he has revealed himself to be a Rat and so 

defection is the best response for A for period 2.  If firm B did not defect in period 1, 

then he may be a Trigger or a Rat (with probability (1 – a) and a respectively).  If 

firm A defects in period 2 then whatever the type of firm B, it will earn two units in 
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period 2 and nothing in period 3 (since firm B will retaliate whether a Rat or a 

Trigger).  Its expected discounted profits are 2.  If, however, firm A cooperates in 

period 2 it will earn 1 unit of profit in that period: in period 3 its profit will depend on 

firm A’s type – with probability a the other firm is a Rat and will defect anyway: with 

probability (1 – a) the other firm is a Trigger and will cooperate in the last period.  

Thus if A cooperates in period 2 its expected period 3 profits are a0 + (1 – a)2.  In 

period 2 firm A’s expected discounted profits, if it cooperates, will be 1 + d(1 – a)2.  

Clearly, firm A will cooperate in period 2 if the expected discounted profits doing so 

exceed those from defection, i.e. 

 
 defect in  2)1(12 αδ −+<   cooperate in 
 period 2         period 2 
 

This is satisfied for d(1 – a) > ½.  In period 1 the decision is similar.  If it defects in 

period 1 it earns 2 then nothing thereafter.  If it cooperates, then it expects to earn 1 in 

period 1, 1 in period 2 (from the foregoing argument) and (1 – a)2 in period 3.  The 

expected discounted profits from cooperation in period 1 are thus 1+ d+ d(1 – a)2.  If 

d(1 – a) > ½ then, again, cooperation is period 1 yields higher expected profits than 

defection.  Thus the above strategy is subgame perfect if the proportion of Triggers is 

high enough (1 – a) > ½ d. 

With uncertainty then, it can be an equilibrium to have both firms cooperating 

initially during the game and only to defect towards the end of the game (the last 

period in the above example).  The intuition is simple enough: by playing 

cooperatively in the first two periods the Rat hides his true nature from his 

competitors.  There is a “pooling” equilibrium early on: both Rats and Triggers 

cooperate so that cooperation yields no additional information about the firm’s type to 

alter the “priors” based on population proportions a, (1 – a).  One problem with this 

account – for neo-classical economists at least – is the need to assume the existence of 

non-rational players to sustain the collusive outcome.  This is a problem in two 

senses.  Firstly, there are an indefinite number of ways to be non-rational: alongside 

the Trigger, the bestiary of the non-rational includes the “Tit-for-Tats” (Kreps et al. 

1982) and many other fantastical possibilities.  Secondly, the methodology of most 

economics is based on an axiom that all agents are rational maximizers.  It might be 

said that all that is required for such equilibria is the belief that there are some non-
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rational players.  While this may be so, it would seem less than satisfactory if the 

belief were not justified by the existence of the required proportion a of Triggers. 

This sort of equilibrium with imperfect information is called a sequential 

equilibrium and has the added ingredient that firms use the history of the game to 

learn about each other’s type by Bayesian updating.  The equilibrium strategies in the 

example need not be unique: for some values of d and a it is also an equilibrium for 

Rats to defect throughout the game, as in the full- information case.  However, there 

exists the possibility of sustaining cooperative behaviour for some part of the game 

even with a limited period of play.  The use of sequential equilibria has been applied 

to several areas of interest and industrial economists – most notably entry deterrence 

(Milgrom and Roberts 1982a, b). 

 

6.7 Conclusions  

 

This chapter has tried to present some of the basic results in the recent literature on 

oligopoly theory in relation to product market competition.  Given the vastness of the 

oligopoly literature past and present, the coverage has been limited.  For those 

interested in a more formal game-theoretic approach, Lockwood (1987) is excellent 

(particularly on repeated games and optimal punishment strategies).  On the growing 

literature on product differentiation, Ireland (1986) is comprehensive.  Vickers 

(1985b) provides an excellent survey of the new industrial economics with particular 

emphasis on its policy implications. 
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1   a*-i is the n-1 vector of all firms’ strategies excepting i’s. 
2   See Debreu (1952), Glicksberg (1952), and Fan (1952).  Strict concavity is a 

stronger  condition than we  need – it can be relaxed to quasiconcavity.   
3  A sufficient condition for uniqueness is that each firm’s reaction function is a 

“contraction  mapping” – see Friedman (1978) for a formal definition. 

4 Note the change in the use of the word “strategy”.  In a one-shot game, the firm’s 

strategy is simply the action it pursues.  In a repeated game “action” and 

“strategy” cease to be equivalent, “strategy” being its “game plan”, the rule by 

which the firm chooses its action in each period. 
5  Bayesian updating means that firms have subjective probabilities which they 

update  according to  Bayes rule.  Firms start the game with “prior” beliefs, and 

revise these to  take into account what  happens.  This is a common way to model 

learning in neoclassical  models. 
6  This simply states that xi is chosen to equate marginal revenue with marginal cost. 
7  The reason for this non-existence is quite simple – step 3 of our intuitive proof 

breaks down  and  the  competitive price need not be an equilibrium.  The 

competitive price is an equilibrium with  constant returns because when one firm 

raises its price the other is willing and able to expand its  output to meet all demand.  

However, if firms have rising marginal cost curves they are supplying  as much as 

they want to at the competitive price (they are on their supply functions).  If one firm 

 raises its price there will be excess demand for the firm(s) still setting the 

competitive price.  The  firm raising its price will thus face this unsatisfied residual 

demand and, in general, will be able to  raise its profits by so doing (see Dixon 

1987a: Theorem 1).  One response to this non-existence  problem is to allow for 

mixed strategies (rather than firms setting a particular price with probability  one, they 

can set a range of prices each with a particular probability).  Mixed-strategy equilibria 

 exist under very general assumptions indeed (Dasgupta and Maskin 1986a,b) and 

certainly exist  under a wide range of assumptions in the Bertrand framework 

(Dasgupta and Maskin 1986a; Dixon  1984; Dixon and Maskin 1985; Maskin 1986).  

However, the analysis of mixed-strategy equilibria  is relatively complex and it has 

yet to be seen how useful it really is.  It can be argued that it is  difficult to see that 

mixed strategies reflect a genuine aspect of corporate policy. 
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8  The standard models of Bertrand competition assume that outputs are demand-

determined (see  11) : each firm’s output is equal to the demand for it.  This was the 

assumption made by  Chamberlin (1933) in his analysis of monopolistic 

competition.  This is appropriate with constant  costs since firms will be willing to 

supply any quantity at the price they have set (for pi = c,  profits are increasing in 

output).  More generally, however, it is very strong.  Surely firms will  only meet 

demand insofar as it raises the firm’s profits.  With rising marginal cost the output that 

 the firm wishes to produce given the price it has set is given by its supply function 

(the output  that the firm wishes to produce given the price it has set is given by its 

supply function).  If  demand exceeds this quantity and there is voluntary trading then 

the firm will turn customers  away (otherwise marginal cost would exceed price).  

This approach is similar to Edgeworth’s  (1925) analysis of the homogeneous case – 

see Dixon (1987b), Benassy (1986).  Benassy  (1986) has analysed the implications 

of including an Edgeworthian voluntary trading constraint  on price-setting equilibria.  

While the Nash equilibrium prices will be the same there is, however,  an existence 

problem: if demand is highly cross-elastic between firms then no equilibrium may 

 exist. 
9  The formula can be obtained by total differentiation of the implicit function 

( ) θπ =ji aa ,1 . 

10  “Investment” can be taken as any fixed factor – (capital, R&D, firm-specific 

human capital and  so on). 
11  Long-run average cost is derived as follows.  Minimise total costs rK + L with 

respect to  the  production function constraint A4.  Since the production function 

displays constant returns, long- run average and marginal cost are equa l. 
12  The profit frontier in Figure 13 is derived under the common  framework  A1-2.  

Linearity comes 

      from constant returns with a homogeneous product.  The actual solution is that 

total output on the 

      frontier equals the monopoly output M, with total profits at their monopoly level 

µ.  L determines   

      firms’ share of output and profit: 

 

   µλπλλµπλ )1(;)1(;; 2211 −=−=== MxMx  
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 With diminishing returns, i.e. a strictly convex function, the profit frontier will 

have a concave  shape. 
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Figure 6.1: The price-cost margin and the number of firms
in the Cournot-Nash equilibrium
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