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Abstract.

In this paper we model the evolution of conjectures in an economy consisting of a continuum of firms which meet
in duopolies according to a random matching framework. The duopoly game is modelled by the conjectural
variation model, where the firms belief (conjecture) about the other firm's behaviour determines its own
behaviour. An evolutionary process occurs, by which conjectures that lead (on average) to higher profits become
more common.  This is modelled by replicator dynamics, and can be seen as occurring due o a provess of
imitation, propagation, and natural selection. In the context of homogeneous good Cournot duopoly. the
conjectures resulting trom the noiseless rephicator dynamics are the consistent conjectures. We also oblain a
variety of analytic and simulation results for noisy replicator dynamics, and equilibrium selection.

This is a prehminary and incomplete version. We would like to thank Ken Binmore, Avaer Shaked and David
Ulph for comments on an caclier version of the paper. Faults remain ours. We would like to thank the ESRC for
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In this paper we explore the evolution of beliefs in an cconomy in which boundedly
rational firms are randomly matched in pairs each period to play a duopoly. The firms have
beliefs about how their opponents play the duopoly game. The population of firms is
characterised by a distribution of firm types: a firm type represents a particular belief that the
firm might have. When we look at the population (economy) as a whole, some types of belief
will (on average) be more profitable, and others less profitable. In this paper, we argue that
beliefs (firm types) that are more profitable will become more common; beliefs that are less
profitable will become less common. Hence we envisage a process of Darwinistic social
evolution driving the distribution of beliefs of firms in the economy. 1t should be noted that this
is an economic or strategic explanation of the beliefs of firms. This contrasts with much of
economic theory which adopts an epistemic view, where rational firms adjust beliefs in a way
which is in some sense statistically optimal (e.g. using Bayes rule under common knowledge).

The nature of the social evolution can be viewed in several ways. It can be a process of
imitation: less successful firms imitate the more successful. It can be a process of propagation,
in that the best practice of successful firms is spread by some mechanism: the successful firms
diversify (multiply), the managers of successful firms move around and bring the ideas of the
successful firm to the less successful firm types. It can also be a method of selection: the least
successful firms are more likely to go bankrupt than the more successful. In this paper, we do
not attempt to model this process in detail. Rather, we assume that there is indeed some
Darwinian mechanism at work, and in particular we model this by replicator dynamics'.

We model firms' beliefs within the conjectural variation Cournot duopoly model with a
homogencous good. Each firm has a (linear) decision rule, which gives its output as a function
of the output of the other firm. The decision rule of firm i is related to its conjecture about the

slope of the other firm j's decision rule: firm i maximises its own profit given its conjecture about

IReplicator dynamics and/or similar evolutionary algorithms have been the tocus of recent literature on game
theory. See, among the others, Binmore and Samuelson (1992, 1995), Binmore er al. (1994), Linster (1992,
1994), Nachbar (1992), Kandori e al. (1993).



the slope of the other firm's output. We can classify firms in the economy according o the value
of this conjecture; a firm fvpe is a particular value of conjecture ¢. The range of firm types we
consider is from ¢=-1 (the Bertrand conjecture), through ¢=0 (the Cournot or Nush conjecture)
to ¢p=+1 (the joint profit maximising or perfectly cooperative firm). The proportion of tirms that
are of a particular type i is Z; . Clearly, the average profit of a particular firm type will depend on
the distribution of firm types in the population. Changes in the population proportions are driven
by the profits of the firm type relative to the average population profits: the profits of each firm
type respond to population dynamics. We consider the case of "noisy” replicator dynamics, so
that there is some randomness in the process. This process may converge to a steady state where
population proportions are constant.

The results of this paper are very clear cut, and partly rely on analysis and partly on
simulation. First, we show that in the case of linear demand and quadratic costs, there is a
unique attractor for the replicator dynamics of this model when there is no noise: the conjectures
of the firms will converge onto the consistent conjectures?. This is an interesting result: the
original literature on consistent or rational conjectures saw the justification as being in terms of
epistemic rationality: rational firms ought to be correct. Here, however, we can see an
alternative explanation: a population of boundedly rational firms can evolve to the consistent
conjectures. In the case of no costs of production, the consistent conjecture is the Bertrand
conjecture ¢=-1. This is a "dominated strategy", and not evolutionary stable. We analyse the
case where we have a finite set of firm types (the set is generated by a grid of granularity & on
the interval [-1, 1]). There is a set of attractors consisting of firm types -1 to some ¢*>-1. These
are Pareto ranked attractors. We find that from a wide range of simulations the dynamics

converge on the Pareto Dominant equilibrium.

zﬁy consistent, we mean that both firms conjectures are equal to the slope of the other lirm's reaction lunction.
_Smce the decision rules are linear, this is equivalent 10 Bresnahan's definition (1981). Other carly contributions
include Hahn (1977,1978), Perry (1980), Kamien and Schwartz (1983), Ulph (1983), Boyer and Morcaux (1983).

With a little bit of "noise”, the replicator dynamics lead to a distribution which is massed

around the point attractor of the noiseless dynamics. However, as the level of noise increases,
we find that distribution becomes much flatter.

We believe that the methodology of this paper highlights an important idea. One of the
explanations of types of behaviour and of the underlying beliefs is that they lead to higher
payoffs and hence become more common. This is not a form of explanation based on some
fundamental notion that firms (or economic agents) are "rational” in any fundamental sense, but
merely that they are "intelligent" and boundedly rational, and that there may also be some
process of natural selection rewarding the successful. In the context of conjectural variation
duopoly, we come up with the surprising result that the evolutionary process provides a possible
justification for consistent conjectures based on bounded rationality. The main objection to the
notion of consistent conjectures in the past was that it did not fit in with the notions of
rationality and common knowledge of game theory®. The results of this paper suggest that more
recent developments in evolutionary game theory may lead to a reapprisal of the notion of

consistent conjectures.

1: The basic duopoly model: conjectural variation duopoly

We are considering an economy populated by firms matched in pairs, each pair playing a
duopoly. Let us first consider the constituent duopoly game, which in this paper is the simplest

model of conjectural variation duopoly. Firms choose output levels which are produced with
marginal cost TC, = %qf i=a,b. The market price is assumed to be a linear function of the two

outputs p =1 -gq, - g,. Firm a's payoff function is given by

.
ﬂ,{fn»qh)=q{.(l—qu-q,—ifh) [

YIn Tirole words "We conclude that this methodology (the conjectural variation approach) is not theoretically
satislactory, as it does not subject itself 1o the discipline imposed by game theory” (1988, p.244). Other criticism
can he found in Makowski {1987), Shapiro (1989), Lindh (1992).



Each firm has a conjecture about how the other firm will respond to it. We call this the

conjectural variation parameter ¢ (CVP), where:

d
0, =t [2]
dq,

The maximisation of profits [1], given the CVP [2] yields the first order condition:

%=1—[(2+¢,+e-]q, +g,]=0 (31

Equation [3] defines the "reaction function” of firm a given its belief ¢, which we will describe
here as a “"decision rule”. There is a population of firm types, a firm type s defined as a
conjecture, which is represented by the corresponding decision rule. A decision rule for firm a
(S,) 1s a function mapping the output of the other firm and its own conjecture ¢ onto a choice of
output:
8, =t a0} = (0]

A convenient way to represent a firm type is by its explicit decision rule, derived from [3], which
1s composed by an intercept term and a slope term (dropping the subscript):

1
2+0+c

(intercept) [4a]

ho:

1
hy = 2verc (slope) (4b]

Both the intercept and the slope depend on ¢ which, it is useful to recall, is a measure of the
expected compelitiveness of the rival. Given a pair of decision rules, the equilibrium output pair
is given by the point of intersection. Assuming c>0 we can define the closure of the set of output

pairs yielding strictly positive profits* for firms a and b:

A, s{(q.. ael01] :q, s{:w,}[i]} (5]

2+c¢

4t ¢>0, then A, is the set of points with non-negative profits: if =0, then since profits are never below zero, we
define A; as the closure of the set of points yielding strictly positive profits.

and similarly for firm b; we define next the set of output s yielding positive profits to both firms

as A=A, UA, and depict Ay, in fig.1(a) and A in ig.1(b).
[fig.]1 here]

The set 1—-g, —g, =cq, corresponds to the Walrasian set, where price is equal to
marginal costs. The Cournot-Nash outcome occurs at point C where both firms produce 1/(3+c)
and the price is (14+c)/(3+c). The monopoly point for firm a (b) is the point M, (Mp) where the
firms produce the monopoly output 1/(2+c¢) and the price is (14¢)/(24¢). The points S, and Sy,
represent the Stackelberg points for firm a and b respectively. Given that we restrict ourselves to
o € [~1, 1], the set of all possible equilibria is represented by the shaded area in fig.1(b)

The "genetic variability" among firm types reduces to the different values assumed by the
CVPs. We will restrict our analysis to the set ¢ €[~1,1]. The lower bound on the CVP ensures
that ¢, +¢, <1 when c=0. The imposition of an upper bound is less obvious; note that for
0,=¢p=1 the equilibrium will be the Joint Profit Maximising (JPM) outcome at point I in fig.1
corresponding to the symmetric joint profit maximisation. For this reason, as a first
approximation, we impose the upper bound on ¢. The resulting range of firm types runs from the
Walrasian fum producing output up to the point where price equals marginal costs to the

cooperative firm. We can infact consider various standard types of decision rules, represented in

Table 1:
C=0 C=0.5 C=1
Firm Type ¢ Intercept | Slope | Intercept| Slope | Intercept | Slope
Cournot Firm 0 0.5 -0.5 0.4 0.4 173 -1/3
Walrasian Firm -1 1 -1 23 =213 0.5 -0.5
Cooperative(JPM) 1 173 1 217 217 174 -1/4
Stackelberg (SLF) | -1/(2+¢) 213 -2/3 10/11 -10/11 8 -3/8

Table | Some standard decision rules.



The Cournot firm believes that the output of its nval will remain unchanged following a
variation in its own output; the Walrasian firm is the most competitive, it believes that the
opponent will react to its output changes with an equal and opposite change in output so as to
maintain a constant market price. The Joint Profit Maximiser firm (JPM), or cooperative finm,
expects the opponent to match its own behaviour, i.e. following a reduction in output, it will
expect an equal reduction in the output of the opponent. Finally the Stackelberg Leader Finn
(SLF) expects its rival to behave like a Cournot firm and hence its CVP 15 equal to -1/(2+¢), the
slope of Cournot firm's decision rule (which depends on ¢).

1t is easy to verify that for pairs of CVP's between [-1,1] a stage game equilibrium always
exists and s stable when ¢>0. When c=0, the stage game is stable unless both firms have

conjectures equal to minus unity®. This allow us to compute the equilibrium pair {4,.4,} and the

related payoffs as a function of each firm's CVP. In particular, from [4]

. _ I1+¢, +c
4.(0..0,) Jrdctct +(2+c)o, +0,)+0,9,

(6]
Substituting (6] into [1] yields:

(146, +¢)’(2+c+2¢,)
A3 +dc+t +(2+c)9, +6,)+9,0.)

n;(e,.9,) = (71

Expressions [6] and (7] give the equilibrium output and profits respectively. In terms of fig.1(b),
the equilibrium output pairs will be restricted to the shaded compact convex subset of A. If both

firms have a CVP=1, the stage game equilibrium will occur at J; When both firms have CVP=-1

3In particular, we can represent the decision rules as defined by a dynamic system of the form g = h+ Hy
- =il
where

h

0 .a]
w 0

h=[hous hoy ). H:[h

and hyy and h are defined as in [4]. The equilibrium of this dynamic system is stable if both eigenvalues are real

and less than unity in absolute value. The Eigenvalues are the root of ‘,‘hhhw S leas easy o venily that this s

always the case when CVP are restnicted between [-1,1] and ¢>0. If ¢=0 with both CVPs equal to -1, we get a
positive unit root. In this case the level ol prolits depends on the initial output. We adopt the convention that in
this case, profits are at their equilibrium value of zero.

equilibrium will occur at W, if both firms have Cournot conjectures CVP=0, the equilibrium will

occur at C.
2: The Population of firm types and Axelrod Tournaments

The method we adopt consists of three stages. First we determine the set of firm types
which will cunsllitute our "population”. Second the firms play an Axelrod Tournament, in which
each firm type plays each other and we determine the payoff for each possible pairing. The
Axelrod Tournament is simply a way of generating the payoff matrix of all possible pairings of
firm types. We will run Tournaments for different values of ¢ the cost parameter. Thirdly, given
the payoff matrix generated in stage 2, we run an evolutionary algorithm based on the
“replicator dynamics”.

Generating firm types is an important step in the procedure. The nature of the final
equilibrium, if any, will depend crucially on the initial population assumed, since the replicator
dynamics we consider does not create new strategies. The algorithm employed to generate fim
types is a grid search on the segment [-1,1] with granularity 8. We need only to specify the
granularity of the grid, i.e. the distance between two adjacent points on the segment. For all our
simulations, we have chosen 8=0.02 which generates 101 types of firms with a CVP including

both -1 and |. We will denote the ordered set of firm types as ® where:

‘DE{¢E"¢|' =_l+5tl" i=0...,%}

The set of firm types, then play a hypothetical tournament, which we called an Axelrod
Tournament given the similarity with the renowned one (Axelrod, 1984). Each firm type faces
each other firm type in a conjectural variation duopoly game and receives a payoff depending on
the firm type with which it is matched. Calculating payoffs is very easy. Infact, restricting our
attention to the set @ a closed form solution to the oligopoly game always exists and it is given

by [6). Once the complete tournament is run, a nxn payoff matrix, indicating the payoff received



by each firm playing some other, is obtained. More formally, let mjj be the payotf of firm type i
playing tfirm type j. Then the matnx T = [It,_}_l where 1,)=1,2,..,n, denote row and column
respectively. The Average Tournament Profit (ATP) of firm i is then given by the average of
firm type i's payoff summed over row 1.
ATP=Y'rn
=1
The average ATP of the tournament is then the average of all individual ATPs.
We have run one tournament with $=0.02 and n=101 firm types involving 10121 single

market games. In Table 2 we present the results for some interesting firm types for the case of

perspective, a useful comparison can be made with the ATP of a firm which chooses optimally
its conjectural variation parameter against each other firm. As in Dixon et al (1994) we define
this firm as the “Superfirm". In the tournament we assume that each firm type plays always with
the same ¢; the ratio between each ATP and that of the Superfirm will give a measure of the loss
from bounded rationality. The ATP of the Champ is equal to 0.109551 and represents the 97%
of the profit earned by the Superfirm which is pretty high given the large variety of firm types

considered.

In table 3 we summarise the results of Tournaments for different values of c: we chose
the values (0.1, 0.3, 0.5, 1.0}. The first column gives the value of ¢, the second gives the CVP
of the champion firm for each value of c, the third column gives the champion ATP and the

fourth the ratio of champion to Superfirm profits for each Tournament.

c=0:

Firm Type ) ATP Rank (n=101)
Champion -0.48 0.109551 1

Coumnot Firm 0 0.098634 38

WF -1 0 101

JPM 1 0.072303 9

SLF -0.5 0.109548 2

Superfirm 0.1123793

Table 2. Some results of the Axelrod tournament with c¢=0 and granularity §=0.02

The champion of the tournament (Champ.), is the firm type eaming the highest ATP in a given
Tournament. Here, with c=0, the champion has a conjectural variation parameter (¢) equal to -
0.48, very close to that of the Stackelberg Leader Firm (SLF) which in tumn performs quite well
placing uself second. In general, as we would expect, in the single shot confrontation
competitive firms, characterised by negative values of ¢, perform better. Indeed the cooperative
Firm (JPM) -with ¢=1- earns a very low ATP and ranks at the 94th place. On the other extreme
the Walrasian Firm (WF), with ¢=-1, receives zero profits in every game. Another interesting

firm type is the Cournot Firm (¢=0) which comes in at 34th place. In order to put these results in

C Champion | ATP %SF
0 -0.48 0.1096 97.6
0.1 -0.48 0.1073 98.3
03 -0.44 0-1037 99.3
0.5 -0.4 0.1003 99.6
1 -0.34 0.0926 99.9

Table 3: The Tournament for different values of ¢ and granularity §=0.02

We can easily represent all of the results of the 5 Tournaments by plotting graph for each value ¢

which relates the CVP to the corresponding ATP.

Fig.2 here



It is worth noting here that as ¢ becomes larger the champion firm becomes less competitive, but
the CVP is still strictly negative. The ATP of the champion and superfinn both decline, but the
ratio of champion to superfirm profits increases (the fact that profits decline reflects the fact that

costs are higher for the outputs as ¢ increases).
3: The evolution of conjectures

In the previous stage we generaled numerous different firm types and run an Axclrod
tournament amongst the firms. The resulting payoff matrix T indicates the equilibrium payoff
every possible firm will get when confronted with any other firm in the conjectural variation
duopoly game. The next step is therefore to allow for the population of firms to evolve. Firm
types which have higher profits (on average) become more common. This can occur through
the imitation of more successful firm types by the less successful, or through less successful firm
types going bankrupt, or through the propagation of successful firm types through acquisition
or diversification. We do not model the process explicitly.

The population consists of al large number of firms whose distribution across firm types
is summarised by a state vector Z = {z,. Z30eees z_}, whose elements z; represents the distribution
of the population on ®. The vector Z gives then the proportions of each firm type existing in
that period. Consider an initial distribution Z0 on ®; each period firms are randomly matched
and play the conjectural variation duopoly game. The dynamics of the distribution is governed
by replicator dynamics which posits that the proportion of firm types in each period evolves
according to the individual performance with respect to the average ATP. Firm types which
perform better than average in the present period will increase their proportion in the next, while
less successful strategies will become less common.

Accordingly we adopt the "noisy"” replicator dynamics, as in Gale et al. (1995):

,= (l - d)(:r.!»I tz, .l[n,.,_. - ﬁ,_. ) + d—l~ (8]
n

where d €[0,1], T, is the average payoff of firm type i at time t:

nr.l = sz.tul.j [9]
1=l

and 1, , is the average payoff of all firms in iteration t:

m, = iz.,,ﬂu (10)

The parumeter-d is a noise parameter.

Consider first the case with no noise, d=0. Here, two aspects should be stressed: i) the
proportions of firm types evolve according to the absolute difference of profits from the
population average; this implies that better (worse) strategies will become more (less) common,
ii) the proportion of a strategy in the next iteration depends not only on its own relative
performance, but also on its proportion in the present population. This capture the idea that in
order to be imitated (or avoided) , strategies must be both successful (bad) and visible. The
replicator dynamics may eventually converge to an equilibrium where all surviving firm types
earn the same average profit:

z ={z0,=1,>0}if z,2,#0 Vi j=1.,101
This equilibrium corresponds to an attractor. Firm types can be considered as pure strategies in
a game. If it exists, Z* is then a Nash-equilibrium given the set of strategies that were present in
the starting population.

With d>0, we introduce noise in the replicator dynamics. In particular, we assume that a
fraction d of firms randomly switch type with probability (1/101). This is just one of many
possible types of noise, and it could be interpreted as a special type of random mutation that
does not create new firm types. In each iteration a fraction d of each firm type is reintroduced, in
the resulting equilibrium, if any, all firm type will be present with z, 2 d. As it will become clear

later, the introduction of noise in the replicator dynamics performs an important task. Namely, 1t

60n this interpretation and on the issue of the "no creation property”, see Nachbar, proposition |, p.313, (1992).



will make the results more robust by making it independent of the initial conditions?. With noise,
the criterion for convergence 1s that the change in population proportions Z is such that the
largest change in any z; is less than le-100.
The replicator dynamics two properties which will prove useful in the following analysis:

[F1] forward invariance,

[BP] boundary property:.
[FI] implies that according to [8] strategies are neither created nor, except in the limit destroyed;
[BP] states that if z,, >0 and z,, >0, and [1,, > IT , for some t>T, then limz,, = Oimplies that
limz,, = 0. Both properties are shown to hold for the replicator dynamics in Nachbar (1992,
p-323) when the source of change in the population distribution is driven by the relative
difference of profits from the population average under the restriction that the profit matnx T is
non negative with strictly positive diagonal. In the case we are considering the matrix T is non
negative but the diagonal is not strictly positive (1, =0); to keep forward invariance we then
have to consider a dynamics based on the absolute difference of profits from the population
average. Note infact that [FI] requires that each firm type is represented in the population
throughout the evolution until the end when some of them will eventually die off; when the
source of change is the absolute difference between profits, a sufficient condition for [FI] to hold

is that TT < 1 which is always the case in our setting?®.

4: Analysis of the equilibrium

We can establish some results analytically for the case of replicator dynamics with no

noise. In order to do this, we consider a hypothetical "conjecture" game where there are two

Gale, Binmore and Samuelson (1995) adopt a replicator dynamics similar 1o the one adopted here. In addition,
they tell a specific story about the meaning of noise and i1s possible sources. For a different specification ol noise
giving rise 1o mutation see, among the others, Linster (1994).

8To see that consider the case of firm type ¢=-1. This type of firm always carns zero prolits and its proportion

evolves accordingo z_, ,, =2, + Z_,_,(—ﬁ). Itis clear that for IT < 1, z_,, =0only as t — o=,

firms. The game has two stages, and in stage 1 the firms choose their conjectures ¢, and in the

second stage the outputs are determined given the chosen CVPs (according to [6]). We call this
the conjecture game. It is easy to show that when ¢>0, there exists a unique Nash equilibrium in
the conjecture game, and moreover the equilibrium is strict.

Formally, we can write the conjecture game as [9je [—1,1],11 i=a,b). where the payoff
function 1 is given by [7]. We will show that when c>0, there exists a unique strict Nash
equilibrium in conjectures. Note that here we are treating ¢ as a continuous variable, and not

restricting it to @

Proposition 1: Consider [¢;e [-1,1],T1; ,i=a,b]. If ¢>0, then there exists a unique symmetric and
strict Nash equilibrium ¢ . The conjecture ¢ is consistent, in that the slope of the decision rule
equals the conjectured slope.

Proof.: see appendix.

The equilibrium conjectures in [¢je [-1,1].IT" i=a,b] are the consistent conjectures of the
constituent duopoly game. This is quite clear from the proof of Proposition 1: given the
conjecture ¢, of the other firm b, the optimal conjecture of firm a is the "correct” conjecture: i.c.
the CVP that corresponds to the actual slope of the other firm's reaction function in output
space (given by [4b]). The unique Nash equilibrium occurs where both firms have correct
conjectures about each other, which gives rise to the consistent conjectures equilibrium®.

This result enables us to identify analytcally the attractor of the noiseless rephcator

dynamics in the model. A crucial concept here is the notion of an evolutionary stable strategy

(ESS).

*This is not a special case due to quadratic costs. In general, equilbrium conjectures will be consistent, see

Dixon, (1995) lor a general proot,




Definition ESS: A strategy (firm type) ¢ is an ESS of the symmetric game [¢;€ [-1,1],I17,i=a,b]
if and only if:
11(¢.9) 2 11(¢". 9)
and
11(6.0)=11(¢".¢) = 11(¢.9) > T1(¢".¢") forall ¢"# ¢
where rl(¢|,¢z] represents the payoff to a player playing strategy ¢ against an opponent

playing strategy ¢7.

An ESS strategy must be a Nash equilibnium. In addition, if it is a weak NE, the strategy
needs to do strictly better against an alternate best reply then this latter does against itself. A
sufficient condition for a pure strategy (firm type) to be an attractor of the replicator dynamics is
that it is an Evolutionary Stable Strategy (ESS). A sufficient condition for a strategy to be ESS
is that it is a strict Nash equilibrium (for a discussion of the relationship between Nash
equilibrium strategies and ESS strategies see Linster (1990) and Robson (1992)). Thus we can
see that in the case of strictly convex costs (c>0), and in the absence of noise the evolutionary
replicator dynamics will give rise to consistent conjectures there being no other NE in the game.

In the case of c=0, however, things are rather different. Here the Nash equilibrium of
[pel-1.1 ],rl,'(¢,,¢, ],i.j:l,?.] is ¢ =-1, which is the consistent conjecture with zero production
costs. However, it is not a strict Nash equilibrium in the conjecture game [¢;e [-1,1],11],i=u,b]
since ¢=-1 is a dominated strategy. There is a unique Nash equilibrium with ¢+ =-1, (the

consistent conjecture) which is a weak equilibrium and hence:

Proposition 2: Consider [¢e [—1,1],IT ,i=a,b]. Let c=0. There exists no ESS.

Proof: See Appendix

So, whilst we do not need to simulate the noiseless replicator dynamics when ¢>0, we need to

analyse the case of ¢=0 with more care, since there is no ESS. Whilst we abstracted from the

fact that the strategy space (the sct of firm types) was finite in Propositions | and 2, this turns

out to be crucial in the case of c=0. Since we are restricting firm types to be a finite set, it turns
out that there does exist a set of Nash equilibria; with the exception of ¢* =-1, these are in
general strict. We will now proceed to analyse the Nash equilibria of the finite action version of
this game.

It is easiest to analyse the discrete game where the CVPs are restricted to a grid of
granularity & by first considering the continuous version where the minimum deviation is §. Let
1(6,,6,) be the payoff from playing strategy ¢ against strategy ¢2. For ¢€ [-1,1], it is clear
that

5“(¢|-¢z)___{)0 for ¢, <9, Vo, > -1 (1

o4, <0 for ¢, >0,
where ¢, is the best response to ¢,. In words H(¢,,¢2) is strictly increasing to the left of the
best response ¢, and strictly decreasing to the right of it.
Now consider the discrete case, where firm types are restricted to the grid, ¢ed.
Property [1 1] implies that if
1(e,.0,)<1(e,.0,) i<, then
n(e,.0,)<n(e,.0,) Vk<i [12]
moreover
n(e,.e,)<n(e,.0,) Vi>j (13)
Equation [13] means that it never pays to play a strategy higher than that played by the
opponent. This, in turn, allows us to concentrate only on lower strategies when checking for
Nash equilibria. Equation [12] implies that if a strategy ¢;€ @ cannot be improved upon by its
closest element to the left, this will be true for all other lower strategies. Define:
v(e,.8)= 1o, ~8.0,)-11(0,.0,)
where 8>0, ¢je @ and T1(¢; . ¢)) 15 the payoff to the firm playing strategy 1 against strategy j, and

let




5(8) = {0, e ®:v(¢..8) <0}
and let ${8) be the upper bound for S(8).
Clearly,as 8 >0, V(¢,.8) -0, ®&) — -1 S$(8) - {-1}.
We can now state the first lemma which identfies the set of the Nash equilibria (NE) of the

game;

Lemma 1

Let V(9,.8). &(8) and S(8) be defined as above, then:
a) o, is a NE iff ¢, € S(8);
b) if V(#(8).8) = 0, then ®(8) is a weak NE. If, on the contrary V(#(8).8) <0, then (3)
is a strict NE. All ¢, € S(8): ¢, < §(8) are strict NE.

Proof: See Appendix.

Before stating the main result, we rule out the possibility of having an attractor of the

replicator dynamics involving | < N < n surviving firm types, such that some of them lies outside
S(8).

r_ : . I .
Let Z ={z,.z1,...z,} be a generic state vector representing the distribution of the

population across firm types at time T such that z, 20 i=1,2,..,n, Zz, =landlet I<N<n

be the number of firm types to which zr gives positive support. Then define
o={0,0,...0,}

as the ordered set of firm types surviving with ¢,, € 5(3).

Lemma 2

ZT is not an attractor of the replicator dynamics.

Proof: See the Appendix.

We can now state the main result.

Proposition 3

Let 550 and ¢, > —1, then §, is an attractor for the replicator dynamics iff ¢, € 5(8).

Proof: See the Appendix.
5: The results of the simulations.

A: Evolution without noise.

As mentioned beforehand, the sample considered consisted of 101 firm types with CVPs
ranging  from -1 to 1. For  this  population $(0.02)=-0.9  and
§(0.02) = {9, =—1+0.02*i, i=0.5}. The simulations ran until the difference of surviving
firms profits from the population average where smaller than le-100, i.e. IT, ~TI<le—-100. The
first simulation was run with no noise and with the initial vector Z =1/101 Vi=1..101. In
this case there is one surviving firm. This has a CVP equal to -0.9 which corresponds to o(8).
The result clearly indicates a lack of cooperation.The equilibrium average payoff equal to 0.0226
is only the 18.1% of the payoff deriving from joint profit maximisation. The surviving firm
performed pretty badly in the Tournament, its rank being 96, where about a half of the firms
expected the rival to be cooperative (CVP>0) and the other half expected it to be competitive
(CVP<0).

It is worth to recall that the decision rule given above by [4a,b] implies that when faced
with the prospect of being matched with a cooperative rival the firms behave cooperatively, n
terms of fig.1(a), the reaction function becomes steeper as the CVP moves towards 1,
Consequently, being cooperative proves to be good only against other cooperative firms. On the
contrary, being competitive, i.e. expecting the rival to behave competitively, proves to be good
in both events. If the rival firm actually behaves competitively it is better to be competitive, and

if the rival is cooperative defection is more rewarding than cooperation. For these reasons

101 our context a cooperative outcome like the joint profit maximisation is reached when both firms have a CVP
equal to one. In all symmetric equilibna where both firms have a positive CVP industry profits are higher the
closer the CVP is 1o unity and lower the more negative the CVP is. For these reasons we deem as couperative
(competitive) those firms with positive (negative) CVP.




cooperative firms tend to be eliminated once the evolution begins; as the proportion of such
firms declines, the average payoft of the remaining ones declines too, being smaller and smaller
the probability of being matched with another cooperative firm.

On the competitive side, the Walrasian firm always earns zero profits and rapidly
disappears; very aggressive fims (those with CVPs close to -1) are not very successful when
they meet each other and when confronted with cooperative firms. As the evolution proceeds
firms like the Stackelberg leader (SLF) tend to prosper, which in turn induces a reduction in the
overall average profit as the presence of cooperative firms reduces; as the degree of cooperation
goes down, however, the more competitive firms (those with a CVP closer to -1) find
themselves in an environment more suitable to their characteristics. (the idea 1s that against

cooperative firms, less aggressive firms do better than those with CVP closer to -1).

Fig.3 here

Fig.3 shows the evolution of four firm types with a CVP ranging from -0.84 to -0.9 in
five millions iterations. In the early stages of the evolution (roughly 25000 iterations) firm type -
0.84 prospers. Subsequently it is replaced by firm type -0.86 which dominates with a proportion
almost equal to one for roughly 50000 iterations. The same kind of process takes place as the
evolution unfolds until firm type -0.9 establishes itself as the modal firm. From this point
onwards (for almost 2.5 millions iterations) we do not observe cycles and the population
eventually reaches its equilibrium where the entire population of firm types plays the same
strategy. This conclusion is in line with the predictions of Proposition 3 which states that
{@(8) ,6(8)) is a potential auractor for the replicator dynamics.

To test the robustness of this result we run 10 evolutions with random initial proportion
vectors. In all cases the surviving firm was that with CVP=-0.9. This seems to indicate that
although (9(8),0(8)) is not a global attractor for the replicator dynamics, its basin of attraction

is large. To explore this issue further we constructed 27 initial distributions with modal firms

ranging from -0.8 to 0.8 and with different levels of variunce (high, medium and low

respectively). These distributions cover a wide range of cases, as they take very skewed
distribution and systematically favour certain groups of firms, the initial distnibution of firms 15

depicted in fig. 4
fig.4 here

The results obtained are unanimous; the surviving firm type being -0.9 n all the
simulations. A word of caution should be mentioned here because of the problem of “computer
underflow” as identified by Nachbar (1992). When running simulations of this kind, it 15
necessary to specify some cut-off: if variables (Z; or ITj) fall below a certain cut-off, it is set to
zerol!. Therefore, some firm types can become extinct before being able to invade a population
whose distribution across firm types has become suitable for them to prosper. That this is quite
possible can be seen from fig.3 which show that in a "typical” simulation firm types other than
the final attractor can achieve population proportion very close to unity. Hence it is quite
possible to obtain "pseudo-convergence", where the simulation converges prematurely due to
the extinction generated by the cut-off rule.

We are fully aware that this arbitrary extinction rule exploits the less appealing of the
properties of the replicator dynamics, namely the "no creation” property but we will argue that,
for our purposes, this problem is not as serious as it may seem. The results of the simulations

have been, infact, almost fully predicted. From Proposition 3 we know that the only candidates

to the equilibrium lie in §(8). Our interest rests in the determination of which of the firm types
contained in S(8) will be selected as attractor of the replicator dynamics when different initial

distributions are considered; as long as the problem of computer underflow does not

Lwe chose a cut-off rule of le-200 because of the time constraint; the package we used can infact handle I'Il.llll.brf
as small as 4.19* 10397 With no such cut-oft rule the whole process of the sumulation become extremely tme

consuming.
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substantially alter the dynamics of the system in a way that cannot be predicted affecting the
possibility for these firm types to become altractors of the dynamics, this will not be a problem.
In our simulations we have expressly checked for the problem of pseudo-convergence created by
“computer underflow” and their results should be considered immune from it.

Although the firm type ¢=-0.9 it is not a global attractor for the replicator dynamics, the
outcome generated by these simulations clearly indicates that there is a strong tendency towards
competition. The level of profit resulting from the evolutions is indeed always well below the
collusive level of profits. In addition to that we generated another 18 initial distributions using a
different deterministic algorithm. As in Dixon er al. (1994), starting from the first point in the
grid, we picked the first 10 firm types and gave to them a weight 1/k (total 10/k) and the rest of
the firms an equal part of the remaining weight ((k-10)/(91*k)). The next firm is missed out, and
then the next ten are picked and the new initial proportions are calculated as before and so on.
The first nine distributions were computed with k=40 (which gives the 10 firms group a
proportion of 0.025 each), the other 9 with k=20 (which gives the 10 firm group a proportion of
0.05 each). In this way firm types all over the grid were given a chance to start off with a large
initial proportion.

Again firm type -0.9 resulted the attractor in all of them. It is interesting to note that
none of the firm types with CVP<-0.9 become attractors even when the initial distribution
contains a large proportion of competitive firms suggesting that their basin of attraction is very
small. To check this issue further we, lastly, run a simulation with an initial distribution of firms
across types such that the first 10 types were given 2j=0.09 for i=1,..,10 and the remaining ones

zj=(0.01/91). In this case too, firm type -0.9 resulted to be the attractor of the dynamics.

B: Evolution with noise.
We ran several simulations for different levels of noise and for different values of the cost
parameter c. When noise is introduced, a fraction d of firms undergo a random mutation which

according to the particular specification adopted, does not introduce new firm types. The mutant
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firns switch to any other firm type with equal probability (1/101) and, consequently, all firms

survive with at least a share of (d/n). For convergence we adopted the following criterion:
-7 <le-100,

in other words, the simulations ran until the firms proportions were almost constant.
Table 5 here

In table S the first column gives the level of noise; the second column the conjecture of the
modal firm type; the third the proportion of the firms which are of the modal type; and lastly the
mean firm type (the weighted average conjecture, with population proportions as weights). For
very low levels of noise the modal firm is still -0.9 as in the noiseless case. Furthermore, the
proportion of the modal firm remains high, as is reflected in the mean firm being only slightly
less than -0.9. However, the presence of noise means that all firm types survive with at least
proportions d/101. Whilst less competitive firms die out and their population share goes to zero
in the noiseless replicator dynamics, with noise theses firms survive and make the environment
less competitive (more cooperative). For levels of noise at or above d=0.001, we find that the
mean and modal firms are becoming significantly less competitive as a result, and that the
proportion of the modal firm declines. This of course reflects the fact that the reaction function

for conjectures is upward sloping, so that less competitive opponents favour less compeltitive

firms.
Table 6 here.

In Table 6 we have simulations of the noisy replicator dynamics for different values of the cost
parameter (c=0.1, 0.3, 0.5 and 1), and four different levels of noise. As the first three lines relate
to simulations with ¢=0.1: line one gives the modal firm, line 2 its proportion, line three the

mean firm. The next three lines relate to ¢=0.3 and so on. The four columns represent different




levels of noise for cach case. The results are very much in line with what we found for the case
of ¢=0. For low level of noise, the mean and modal firm are almost the same (representing the
fact that the share of the modal fim is very high), and the modal finm is the consistent
conjecture. However, as the level of noise increases, the mean/mode become different and both
become less competitive, for the same reasons as were apparent in the no cost case. Note that
the consistent conjecture becomes less competitive as ¢ increases (this is a standard result - see

Bresnahan (1981) and Dixon (1986)).

Conclusion.

In this paper, we have taken a model in which firm behaviour depends on firm beliefs.
Firms play the conjectural variation duopoly, and their belief is their “conjecture” about the slope
of other firms reaction functions. We analyze this in the context of an evolutionary framework,
in which more successful types of rule become more common. We model the Darwinian process
using replicator dynamics. Analytically, we find that in the case of strictly convex costs, the
unique ESS is the consistent conjecture. Evolution will select firms with beliefs that are correct.
In the case of no costs, there exists no ESS, and the consistent conjecture (Bertrand) is a
dominated type. We consider the case of a finite susbset of possible conjectures, and use these to
simulate the replicator dynamics. Analytically, we find that there is a set of possible attractors
contained within an compact convex interval with lower bound at the consistent conjecture. The
Pareto Dominant conjecture that is an attractor is the least compelitive. We tried many
simulations, and in all of them this Pareto Dominant attractor was selected by the replicator
dynamics. Whilst there are other attractors, their basin of attraction appears to be very small. We
also consider the case of noisy replicator dynamics using simulations, for both the case of strictly
convex costs and zero costs. In both cases we found the same broad results. At low levels of
noise, the noiseless attractor (the Pareto dominant attractor) was the modal firm, with a

population share very close to unity. However, as the noise increases, the mean and modal firm
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both become less competitive, moving away from the consistent conjecture. We believe that the
0 : '

framework of this paper provides a rationale for consistency of conjectures which is based on
bounded rationality and evolutionary selection. Most of the cnticisms of the consistency and
conjectural variations have focussed on the issue from the perspective of classical game theory
based on perfect rationality and common knowledge. Whilst we accept these cnticisms as valid

15 bas ! ‘ 2 leve more
within the their own framework, our approach is based on different and we believe

plausible foundations.




Appendix
Proof of Proposition 1
Maximisation of the payoffs functions as given in [7] with respect 1o ¢; i=1,2, yields the best

response function:

. 1 L
¢.(¢,)——m ij=12i%]

which corresponds to the actual slope of the rival's reaction function in output space, [4].

Solving the above system yields the Nash equilibrium in conjectures:

. 2
¢_‘=¢;:—%c-1+1’4‘:" (A1)

Uniqueness of the equilibrium can easily be established noting that ¢,'(¢f) 1S a contraction

mapping. Its first derivative is

do’(e,) I

0< = - <1
d¢; (2+C+¢;}~

since ¢ €[~1,1] and since ¢ > 0, this implies that the solution [A1] is unique.

Proof of Proposition 2
The first part of the proposition is similar to that of proposition | and therefore is only sketched.

The optimal conjectures pair derived from maximisation of profits w.r.t. ¢ is:

. ____l__ P o .
0(9,)= Tre Hil2i%)

the equilibrium in conjectures is o = ¢: ==1. Again uniqueness can be proved noting that
¢:(¢j ) is a contraction mapping.

We then show that ¢ = ¢: = =1 is not ESS. From definition of ESS, it must be that

M(=1,-1)211(¢,-1) and if TH(-1,-1)=T1($,~1) then [1(-1,0)>11(¢,9)
noting that T1(=1,0)=T1(¢,-1) =0 V¢, and that I1(¢,¢)>0 V¢ # ~1, the only Nash
equilibrium of the game, given by ¢ =¢; =1 is not ESS. Moreover being ¢ =9’ = -1

unique, there are no others ESS.
QED

Proof of Lemma 1 ”
A) We first prove necessity. V{q:r,ﬁ) is increasing and concave in @, for all ¢, > §(8), V(¢,8) >0

and hence by [13] each firm has an incentive to deviate from (9,.9,) by reducing its strategy to
(0, -8); o, >(8) is not a best response against itself and hence cannot qualify for u NE.
Sutticiency is easily proved by contradiction. Suppose on the contrary that ¢ € 5(8) is not a NE,
from [ 13] this will imply that

n(¢-5.6)2n(6.6)
which immediately contradicts the definition of 5(8).
B) In () we have that

n(§(8)-5.8(8)) < 11(#(8). 8(3))
und hence by [12]

n(e:.6(6)) < 11(6(6).9(3)) vo's 8(8)-8 (A3]

It condition [A2] holds as an equality, in [3}[8), &(5)] and [@{8)—6, 4}(8]] there is no incentive Lo

deviate from one's own strategy and thus they represent two weak NE, when, instead it does

hold as a strict inequality [?0(5)&)(5)] is strict NE. Concavity of V(9,,8) in ¢ ensures that

0, € S(3): 9, < ®(8) are all strict NE.
QED




Proof of Lemma 2.

Assume on the contrary that ZT s an attractor, this would imply that in T

APT = AP’ Vi jeo where AP is the average profit for firm type i at time T. Consider the
firm type ¢, -8, if (¢, ~8) € o then in T
AR, = AR, ) [A4)
if (¢, -8)ea then, by forward invariance (see Nachbar, 1992), for some t<T ZT supports
0, — 8. If the system has to move from Z¥ to Z7 then by the boundary property (Nachbar, 1992)
we should have that for t<r<T:
Aﬁn} > ‘”;u—bl [AS]

The average profits are given by

AP[...I = E:|zln(¢uv¢;) and

AR, =20 2010, ,.0).
Recall that by [11] V¢, 3¢.'(¢}), where ¢, (.) denotes the best response to ¢, and that as ¢’
gets closer to ¢ () the profits are increasing. Since ¢,, & .§'{6), from Lemma 1 we know that it is
not a best response to itself i.e.

M(ey -38.0,)>1(0,.9,).
moreover by [13]

N(ey-8.9,)>M(6,.0,) vo,<0,-8¢0
it follows that

AP < AP

]
(on) (#-5) vz

which contradicts both [A4] and [AS].

QED
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Proof of Proposition 3.
We lirst prove that ¢° € $(8) is a sufficient condition. All ¢ € $(8) are strict NE and hence are

evolutionary stable strategies (ESS). ESS is, in turn, a sufficient condition for ¢ being an
attractor of the replicator dynamics.
We then show necessity. Suppose the contrary, i.e. ¢° is an attractor but ¢° € S(8). Let 27 be
the (degenerate) equilibrium distribution of the population across firm types. By forward
invariance, close to the limit, i.e. for some T<T, let Z¥ define the state vector

z ={g. 2. 25}
where z,20i=1,2.,M, Y z =1, and let ¢° be the k' surviving firm typewhere 1 <k <M,

and z{ be the proportion of firm type ¢". The average profit of firm type i at time T s

AP =Y z11(9,.0,) +211(0,.07) (A6)

Jok
Arbitrarily close to the limit all z;  j # k are negligible and the average profit of each firm type
can be compared considering the second term of the RHS of [A6] only. The transition from zt
to Z! requires that

n(e”.e7)>M(e,.07) Vizk (AT]
Expression [A7] 1s always true for i>k given [13]

n(e’,e7)>n(e,.e") Vi>k,
moreover, given [11], we are sure thatif

n(e".e7)>n(e,.¢7) Vi<k
then

M(e",¢°)>1(e,.0°) Vi<




Therefore we  can restrict  our

M(¢°.¢°) and1(o"-5.¢°) only. Condition [A7] then becomes

n(e*.¢")>n(e"-5.0")
which never holds when ¢" & $(8).

2%
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Fig.3 Evolution of the distribution of firms across firm types
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al tirm z Mean lirm

d=le-5 09 0.996 -(.899
d=0.0001 09| 0976 -1).894
d=0.001 -0.84 0.71 -1.792
d=001 -0.62]  0.047 -0.359
d=0.05 0.52] 0.014 -0.067
d=0.1 05] 0012 0.025

Table 5: The evolutionary results for different levels of noise with ¢=0

| d=le-5] d=0.0001] d=0.001T d=0.01

modal firm -0.72 -1.72 -0.70 .56

c=0.1 z 0.99 0.94 0.40 0.04
*=-072 | mean tirm -0.72 -0.72 -().65 0.30
modal Tirm -0.58 -0.5%8 -0.56 -0.48

=03 3 0.99 0.87 0.23 0.03
9+=—0.58 |mean firm| -0.58 -0.58 -0.52] 021
modal firm| __-0.50 -0.50 048] 044

c=05 z 0.98 0.79 0.15 0.02
[p*=—05 |mean firm 0.50 -0.49 -0.43 0.16
modal firm|  -0.38 -0.38 -0.38 0.34

c=1 z 0.95 0.59 0.07 0.02
p+=-0.38 mean firm 0.38 -0.37 -0.30 -0.08

Table 6: The evolutionary results for different levels of noise with c>0.




